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Abstract. We recently highlighted a fundamental problem recognized
to confound algorithmic optimization, namely, conflating the objective
with the objective function. Even when the former is well defined, the
latter may not be obvious, e.g., in learning a strategy to navigate a
maze to find a goal (objective), an effective objective function to evaluate
strategies may not be a simple function of the distance to the objective.
We proposed to automate the means by which a good objective function
may be discovered—a proposal reified herein. We present Solution And
Fitness Evolution (SAFE), a commensalistic coevolutionary algorithm
that maintains two coevolving populations: a population of candidate
solutions and a population of candidate objective functions. As proof
of principle of this concept, we show that SAFE successfully evolves
not only solutions within a robotic maze domain, but also the objective
functions needed to measure solution quality during evolution.

Keywords: Evolutionary Computation · Coevolution · Novelty search
· Objective function.

1 Objective 6= Objective Function

The goal of any evolutionary algorithm (EA) is to solve a problem, i.e., obtain
a specified objective. This invariably entails defining an objective function (e.g.,
fitness function), which is the function we want to minimize or maximize. In a
recent paper, we targeted a fundamental problem that one might face in practice.
Specifically, while the objective may be known and well defined, the objective
function may be deceptive, and one might easily conflate the objective with the
objective function [1]. Consider the mazes in Figure 1, wherein the challenge is
to evolve a robotic controller (i.e., a model that determines movement given the
robot’s current state) such that the robot, when placed in the start position, is
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able to make its way to the goal. The controller defines the behavior (i.e., decides
the direction of movement) of the robot when it is in a given state (position in
the maze, distances to obstacles). The set of movement decisions over a fixed
number of time steps defines the robot’s path, and the robot’s endpoint is its
position at the final time step.

maze1 maze2

Fig. 1. In these maze problems a robot begins at the start square and must make its
way to the goal square (objective).

It seems intuitive that the fitness f of a given robotic controller be defined
as a function of the distance from the robot to the objective, as done, e.g.,
by [2]. However, reaching the objective may be difficult since the robot is faced
with a deceptive landscape, where higher fitness (i.e., being reasonably close to
the goal) may not imply that the robot is “almost there”. It is quite easy for
the robot to attain a fairly good fitness value, yet be stuck behind a wall in a
local optimum—quite far from the objective in terms of the path needed to be
taken. Indeed, our experiments with such a fitness-based evolutionary algorithm
(Section 7) produced the expected failure, demonstrated in Figure 2.

Reaching the global optimum implies the acceptance of reduced fitness over
the course of searching for an optimal controller. This is at odds with the work-
ings of an evolutionary algorithm, which in practice is driven to optimize the
objective function rather than find the best way to reach the objective. Another
way to frame this problem is that while an optimal solution may be representable
by the controller, it may not be learnable given this simple objective function [3].
For EAs, learnability translates to evolvability [4].

One solution to this conflation problem was offered by [2] in the form of
novelty search, which ignores the objective and searches for novelty (using a
novelty metric that requires careful consideration, e.g., robot endpoint novelty).
However, novelty for the sake of novelty alone lacks incentive for solutions that
reach and stay at the objective. In [1] we offered an alternative view, namely,
that the problem may lie with our ignorance of the correct objective function.
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maze1 maze2

Fig. 2. Path (green) of a robot evolved by a standard evolutionary algorithm with
fitness measured as distance-to-goal, evidencing how conflating the objective with the
objective function leads to a non-optimal solution.

We proposed that rather than exclusively seek out novelty or rely on a fixed
objective-based metric to evaluate both the “journey” and the “destination” it
might be more effective to separate the optimization of the solution from the
optimization of the objective function. For example, just because the robot’s ob-
jective is to reach the goal does not necessarily imply that the objective function
is distance-to-goal.

Thus, we reasoned, we are now left with the task of finding this better ob-
jective function, either manually or—perhaps more intriguingly—through some
automated means; after all, if we are searching for a good objective function,
why not employ a search algorithm? We concluded in [1] with a final specula-
tion, namely, that coevolution [5,6] might offer the key to simultaneously explore
solution optimality and objective-function optimality.

In this paper we flesh out our previous speculations and offer preliminary
evidence that solutions can be coevolved along with the objective functions that
evaluate them. Our newly proposed algorithm is dubbed SAFE, for Solution
And Fitness Evolution.

This paper describes an exploratory study of SAFE. We show that where a
standard, fitness-based evolutionary algorithm fails, SAFE succeeds, on a par
with (or slighly better) than novelty search.

We examine four algorithms in this work—(1) a standard genetic algorithm,
(2) novelty search, (3) SAFE, and (4) random search—for their ability to solve
maze problems. After recounting related work in Section 2, we present two key
ideas, novelty search (Section 3) and coevolution (Section 4). We continue with a
delineation of the robot simulator (Section 5). We then present SAFE (Section 6)
followed by results involving maze-solving robots (Section 7). We end with a
discussion and concluding remarks (Section 8).
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2 Related Work

We believe that the idea presented herein—treating the objective function as an
evolving entity—has not been previously examined as such. There are a number
of related, but distinct, research directions summarized below.

Fitness approximation explores the ways one can estimate the fitness func-
tion by constructing an approximate model. This can be quite useful when an
explicit fitness function does not exist, or the evaluation of the fitness is com-
putationally expensive. An excellent review on the topic by [7] divides fitness-
approximation approaches into three categories: 1) Problem approximation tries
to replace the original statement of the problem by one which is approximately
the same but easier to solve (e.g., evaluate a turbine blade using computational
fluid dynamics—CFD—simulations rather than in a wind tunnel); 2) functional
approximation constructs an alternate expression for the objective function, e.g.,
instead of a CFD simulation of a blade define an explicit mathematical model (see
also work on surrogate fitness functions [8, 9]); 3) evolutionary approximation,
including fitness inheritance—wherein offspring fitness is estimated from parent
fitness, and fitness imitation—where individuals are clustered into groups and
only a group representative is evaluated whereupon it serves as a basis for esti-
mating the fitness of the the others in the cluster. Interestingly, coevolution has
been used in fitness approximation [10].

The objective function conflation problem is also distinct from the topic
of dynamic fitness, wherein the problem itself (along with the global optimum
and/or the fitness landscape) changes during run-time [11]. The prediction of
weather patterns is in line with this challenge. Further, multi-objective opti-
mization, where there is more than one objective to optimize at a time, is also
distinct [12] given that it is typically up to the user to define a multi-objective
fitness function. Multi-objective Pareto front methods are perhaps closest to
the concept we propose in that they seek not to make fixed assumptions about
what makes a ‘good’ solution/objective [12]. However, a Pareto front does not
separate the objective from the objective function, and ultimately leaves the
challenge of picking the ‘optimal’ solution up to the user, traditionally from a
set of candidate ‘non-dominated’ solutions at the front. Ultimately, the chal-
lenges of dynamic fitness and multi-objective optimization are each vulnerable
to the conflation of objective and objective function—and might benefit from a
SAFE-inspired approach.

More generally, the topic of open-ended evolution comes to mind. This type of
evolution occurs in nature, admitting no externally imposed fitness criterion, but
rather an implicit, emergent, dynamical one (that could arguably be summed up
as survivability) [13–15]. Indeed, the original novelty-search paper began with:
“This paper establishes a link between the challenge of solving highly ambi-
tious problems in machine learning and the goal of reproducing the dynamics
of open-ended evolution in artificial life.” [2] While open-ended evolution is a
popular topic in the field of artificial life, we prefer to keep the focus herein on
computational problem solving.
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3 Novelty Search

Novelty search was introduced by [2] and applied to the examination of maze
problems where robot controllers were sought as candidate solutions. Recall that
a controller defines the behavior of a robot, yielding a path through the maze
concluding in an endpoint position. The key idea was that instead of rewarding
endpoint closeness to objective, individual solutions would be considered valu-
able if their endpoint diverged from prior solution endpoints (i.e., the system
was driven to identify solutions that led the robot to new parts of the maze,
regardless of objective closeness).

The novelty metric employed should be carefully defined based on the prob-
lem at hand. In [2], the novelty metric was defined as the Euclidean distance
between the endpoints of two individuals. Note that this is essentially a pheno-
typic, or outcome-based, novelty measure. Differently, a genotypic novelty metric
would examine differences between the architecture of the solutions themselves
(e.g., the robot controllers). We will revisit this in Section 6, where we present
a genotypic novelty metric for SAFE objective functions.

In later work, novelty was combined with other objectives (e.g., performance).
For example, in [16], “an existing creature evolution platform is extended with
multi-objective search that balances drives for both novelty and performance”.
However, this does not involve an evolving objective function, but rather, “The
suggested approach is to provide evolution with both a novelty objective . . . and
a local competition objective”. To wit, the objectives are provided by the user,
as opposed to SAFE, wherein they are evolved. Appendix F of [17] includes a
comprehensive up-to-date list of references to research involving novelty search.

Effectively, novelty search is identical to a standard evolutionary algorithm,
with the fitness function replaced by the novelty metric. We seek novel behav-
iors rather than the objective, hoping that the former will ultimately lead to
the latter. The endpoint of a candidate solution is compared to its cohorts in
the current population and to an archive of past individuals whose behavioral
endpoints were highly novel when they emerged. The novelty score is the average
of the distances to the k nearest neighbors (k was set to 15 both by [2] and by
us; see Table 1 in Section 7 for a summary of parameters).

For future problem flexibility, we implemented the novelty archive differently
than [2]. There, an individual robot’s endpoint entered the archive if its novelty
score was above a certain threshold (which was adjusted dynamically). We chose
to implement a fixed-size archive, with new points entering the archive until
it fills up. Once full, a newly found point that exceeds the archive’s current
minimum will replace that minimum; otherwise it will not enter the archive.
Thus, the archive saves the most novel points (at the time of their emergence).
Our choice of a different archive implementation stems from our initial forays
into other problems (e.g., function optimization) —to be reported in the future—
where no threshold value was readily apparent.

To summarize, a robot (controller’s) novelty score is computed by having the
robot wander the maze for the allotted number of steps (300—see Table 1). Then,
its endpoint is compared to all endpoints of its cohorts in the current generation
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and to all endpoints in the archive. The final score is then the average of the
k = 15 nearest neighbors.

4 Coevolution

Coevolution refers to the simultaneous evolution of two or more species with
coupled fitness [6]. Strongly related to the concept of symbiosis, coevolution
can be mutualistic, parasitic, or commensalistic [18]: 1) In mutualism, different
species exist in a relationship in which each individual (fitness) benefits from
the activity of the other; 2) in parasitism, an organism lives on or in another
organism, causing it harm; and 3) in commensalism, members of one species
gain benefits while those of the other species neither benefit nor are harmed.
Interestingly, though the idea of coevolution originates (at least) with Darwin—
who spoke of “coadaptations of organic beings to each other” [19]—it is arguably
somewhat less pervasive in the field of evolutionary computation than one might
expect.

A cooperative (mutualistic) coevolutionary algorithm involves a number of
independently evolving species, which come together to obtain problem solutions.
The fitness of an individual depends on its ability to collaborate with individuals
from other species [5, 6, 20,21].

In a competitive (parasitic) coevolutionary algorithm the fitness of an indi-
vidual is based on direct competition with individuals of other species, which in
turn evolve separately in their own populations. Increased fitness of one of the
species implies a reduction in the fitness of the other species [22].

We will discuss the particulars of coevolution—specifically, commensalistic
coevolution—in Section 6, when we present the SAFE algorithm. To our knowl-
edge, this is the first introduction of a commensalistic coevolutionary algorithm.

5 The Robot and the Maze

We implemented a robotic simulator, similar to the one used by [2], involving
a robot moving in a two-dimensional environment that contains walls, with a
controller dictating its actions, based on inputs from several sensors. The major
difference from [2] is that we did not use NEAT—NeuroEvolution of Augmenting
Topologies—for the controller, as we wanted full access to all code aspects, and
we wanted to make our controller as interpretable as possible.

The maze environment is a two-dimensional grid of size 100 × 100 cells,
where each cell can either be empty or (part of a) wall (refer to Figure 1).
Two cells are designated as the start and goal. The robot can move horizontally
or vertically, but not diagonally. The geometry is taxicab (Manhattan), i.e.,
the distance between two points is the sum of the absolute differences of their
Cartesian coordinates.

The robot has 8 sensors (Figure 3):

– distup , distdown , distleft , distright : distances to the obstacle (or boundary) in
the upward, downward, leftward, and rightward direction, respectively.
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– goalup , goaldown , goalleft , goalright : indicators of whether the goal is towards
the upward, downward, leftward, or rightward direction, respectively.

The dist values are computed by examining the robot’s current position with
respect to the nearest obstacle or boundary in the appropriate direction. The goal
values are computed with respect to the robot’s current position (the robot can
sense the goal “beacon” through walls). If the goal is in the northeast quadrant of
the robot, goalup and goalright are set to the maze height and width, respectively,
while the other two goal sensors are set to 0. Similarly, the sensors are set when
the goal is northwest, southeast, or southwest of the robot (Figure 3).

Fig. 3. The robot’s 4 dist sensors indicate distance to nearest obstacle (wall or bound-
ary). The 4 goal sensors indicate direction of goal: 2 are always set to ht and wd (maze
height and width), and 2 are set to 0.

The robot moves for an allotted number of steps (set to 300, see Table 1).
Movement is controlled by two variables, horizontal – h and vertical – v. The
robot moves one cell in the horizontal position and one cell in the vertical position
at every step, as follows:

1. Compute robot’s 8 sensor values.
2. Set h and v to:

h = p1distright + p2goalright + p3distleft + p4goalleft

+ p5distdown + p6goaldown + p7distup + p8goalup

v = p9distright + p10goalright + p11distleft + p12goalleft

+ p13distdown + p14goaldown + p15distup + p16goalup
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3. If h ≥ 0 (h < 0) then move right (left), provided adjacent cell is neither
boundary nor wall (otherwise don’t move).

4. If v ≥ 0 (v < 0) then move down (up), provided adjacent cell is neither
boundary nor wall (otherwise don’t move).

The solution search space is engendered by the vector [p1, . . . , p16] ∈ R ∩
[−1, 1], where each set of [p1, . . . , p16] values constitutes a robot’s control vector,
which determines its behavior. In this domain, a successful vector will drive the
robot to the goal. The algorithms we examine below all aim to find a successful
control vector.

6 SAFE: Solution And Fitness Evolution

SAFE is a coevolutionary algorithm that maintains two coevolving populations:
a population of candidate solutions and a population of candidate objective func-
tions (see Figure 4). The evolution of each population is identical to a standard,
single-population evolutionary algorithm—except where fitness computation is
concerned. Below we describe the various components of the system: population
composition, initialization, selection, elitism, crossover, mutation, and fitness
computation.

S1 S2 S3

... Sn

S4 S5

Population of Solutions

Objective Function

O1 O2

O3

... Om

O4

O5

Population of
Objective Functions

O2

(Each Si has associated �tness)

(Each Oi has associated �tness)

A. Standard Evolutionary Algorithm

B. SAFE

Selection

Crossover

Mutation

Elitism

Evolve Next
Generation

4

Evaluate each Si

Fitness of  Si

1

S1 S2 S3

... Sn

S4 S53 1

Evaluate each Si 
with each candidate Oi

Fitness of  Si = 
largest Oi out of Om

Population of Solutions
(Each Si has associated �tness)

2Evaluate each Oi Fitness of  Oi

‘Genotypic’ Novelty of Oi

Selection

Crossover

Mutation

Elitism

Evolve Next
Generation

Selection

Crossover

Mutation

Elitism

Evolve Next
Generation

Fig. 4. A single generation of a standard evolutionary algorithm vs. a single generation
of SAFE. The numbered circles identify sequential steps in the respective algorithms.
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Populations. An individual in the solutions population is a list of 16 real
values, each in the range [−1, 1]. These values are the robot parameters, pi,
described in Section 5.

An individual in the objective-functions population is a list of 2 real values
[a, b], each in the range [0, 1], whose usage is described below. Population sizes
and other parameters are given in Table 1 (Section 7).

Initialization. For every evolutionary run: both populations are initialized
to random (fixed-length) lists, wherein each component value is in the appropri-
ate range.

Selection. Tournament selection with tournament size 5, i.e., choose 5 indi-
viduals at random from the population and return the individual with the best
fitness as the selected one.

Elitism. The 2 individuals with the highest fitness in a generation are copied
(“cloned”) into the next generation unchanged.

Crossover. Standard single-point crossover, i.e., select a random crossover
point and swap two parent genomes beyond this point to create two offspring.
The crossover rate is the probability with which crossover between two selected
parents occurs. (Note that for an objective-function individual, which comprises
two values, if crossover occurs, it will always be, ipso facto, at the same position.)

Mutation. Mutation is done with probability 0.4 (per individual in the pop-
ulation) by selecting a random gene (of the 16 or 2, respectively) and replacing
it with a new random value in the appropriate range.

Fitness. Fitness computation is where SAFE dynamics come into play.

In a standard evolutionary algorithm (which is one of the four algorithms we
test below) each solution individual is assigned fitness based on a fixed objective
function that computes a value inversely proportional to the distance to goal of
the robot’s endpoint, i.e., 1/distToGoal (Figure 4A).

With novelty search, an individual’s fitness value is replaced with its novelty
score, as described in Section 3.

In SAFE, each solution individual, Si, i ∈ {1, . . . , n} is scored by every candi-
date objective-function individual, Oj , in the current population, j ∈ {1, . . . ,m}
(Figure 4B). In this preliminary investigation, candidate SAFE objective func-
tions were allowed to incorporate both ‘distance to goal’ as well as novelty in
order to calculate solution fitness. The best (highest) of these objective func-
tion scores is then assigned to the individual solution as its fitness value (Al-
gorithm 1). Note that most of the computational cost goes into simulating the
robot and computing novelty scores—which is done only once per individual
solution.

As noted above, an objective-function individual is a pair [a, b]; specifically,
a determines the influence of ‘distance to goal’ and b determines the influence of
‘phenotypic solution novelty’. Oj(Si) is the fitness score that objective function
Oj assigns to solution Si, given as:

Oj(Si) = a× 1

distToGoali
+ b× noveltyScorei , (1)
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Algorithm 1 Compute fitness values of solutions population

1: n ← size of solutions population
2: m ← size of objective-functions population
3: for i← 1 to n do
4: simulate robot with Si, and derive endPositioni , distToGoali

5: for i← 1 to n do
6: compute noveltyScorei , based on endPosition and archive

7: for i← 1 to n do
8: for j ← 1 to m do
9: fj ← Oj (Si) # Oj uses distToGoal & noveltyScore (Equation 1)

10: solutionFitnessi ← max fj

where distToGoali is the distance to goal of robotic controller (solution) i’s
endpoint, and noveltyScorei is the novelty score of solution i. Rather than use
one or the other, we let evolution discover an effective mix of the two objective
function components (as opposed, e.g., to [23], wherein a weighted combination
of fitness and novelty was used with pre-determined weights).

As for the objective-functions population, determining the quality of an
evolving objective function places us in uncharted waters. Such an individual
is not a solution to a problem, but rather the “guide”—or “path”—to a solu-
tion. As such, it is not clear what comprises a good measure of success.

We experimented with various forms of mutualistic coevolution, where the
fitness of an objective function depends on its ability to ascribe fitness to solu-
tions in the solutions population, such that better solutions (i.e., closer to the
objective) receive higher fitness values, and worse solutions receive lower fitness
values. In particular, we considered evaluating objective functions based on the
correlation (i.e., Pearson’s or Spearman’s) between the solution fitness scores
it generated and distance to the actual objective. While seemingly intuitive,
this approach yielded unsatisfactory results, finding that this implementation
ended up reinforcing the same local minima problem encountered when using
a traditional evolutionary algorithm. Despite this failure, we plan to continue
investigating the possibility of a mutualistic coevolutionary approach, where the
fitness of objective functions is dependent in some way on the population of
candidate solutions.

In the working version of SAFE presented here, we turned to a commensalistic
coevolution strategy, where the objective functions’ fitness does not depend on
the population of solutions. Instead, it relies on genotypic novelty, based on the
objective-function individual’s two-valued genome, [a, b]. The distance between
two objective functions—[a1, b1], [a2, b2]—is simply the Euclidean distance of
their genomes, given as:

√
(a1 − a2)2 + (b1 − b2)2. Note the contrast between

genotypic novelty here and phenotypic (i.e., outcome-based) novelty used to
evaluate solutions (both by novelty search and by SAFE).

Each generation, every candidate objective function is compared to its co-
horts in the current population of objective functions and to an archive of past



Solution and Fitness Evolution (SAFE) 11

individuals whose behaviors were highly novel when they emerged. The novelty
score is the average of the distances to the k (= 15) nearest neighbors, and is
used in computing objective-function fitness (Algorithm 2).

Algorithm 2 Compute fitness values of objective-functions population

1: m ← size of objective-functions population
2: for i← 1 to m do
3: compute noveltyScoreObji
4: objectiveFitnessi ← noveltyScoreObji

To clarify, we recap SAFE’s double use of the idea of novelty. First, solutions
evolve not via pure goal-directedness or through pure phenotypic novelty, but
rather through a combination of the two. The exact nature of this combination
is determined by the evolving objective functions, which themselves use novelty
(albeit genotypic) to explore the objective-function search space.

The code for SAFE and all the experiments carried out in this paper is
available at https://github.com/EpistasisLab/.

7 Results

To test our new framework, we performed eight sets of experiments, using four
algorithms, each set to search for robotic controllers that solve the two mazes of
Figure 1:

1. Standard evolutionary algorithm (fitness is 1/distToGoal).
2. Novelty search.
3. SAFE.
4. Random search.

Table 1 summarizes the run parameters.
Random search serves as a yardstick to ensure evolution is tackling a non-

trivial task. It is done by drawing 100,000 solutions at random and outputting
the best one. 100,000 equals maximal number of generations × population size,
which are used by the previous algorithms. This ensures a fair comparison in
terms of resources.

The results are shown in Table 2. A solution is deemed successful if the robot
gets to within a distance of 2 from the goal. We note that SAFE is on a par
with novelty search on maze1, and able to discover slightly more solutions for
the harder maze2. SAFE also appeared to find a solution that reached the goal
within slightly fewer generations, however this finding cannot be deemed signif-
icant. Figure 5 shows sample solutions found by SAFE (contrast this with the
standard evolutionary algorithm, which always gets stuck in a local minimum,
as exemplified in Figure 2).

https://github.com/EpistasisLab/
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Table 1. Algorithm parameters. Unless stated, a relevant parameter not shown is that
listed under ‘Standard EA’ (e.g., the generation count for novelty search is that of the
standard EA).

Description Value

Standard EA

Number of evolutionary runs 500
Maximal number of generations 500
Size of solutions population 200
Type of selection Tournament
Tournament size 5
Type of crossover single-point
Crossover rate 0.8
Probability of mutation (solutions) 0.4
Number of top individuals copied (elitism) 2
Maximal no. steps taken by robot 300
Stop if distance to goal ≤ 2

Novelty search

Average over k nearest neighbors, k = 15
Archive size 1000

SAFE

Size of objective-functions population 200
Probability of mutation (objective functions) 0.4

Random search

Number of random individuals drawn 100,000

Table 2. Results of 500 evolutionary runs per each algorithm. Success: number of
successful runs, where the algorithm discovered a solution that gets the robot to a dis-
tance of 2 or less from the goal. Generations: average number of generations (standard
deviation) to success.

Algorithm Maze Success Generations

Standard EA
maze1 0 —
maze2 0 —

Novelty
maze1 322 145 (132)
maze2 10 249 (163)

SAFE
maze1 328 141 (130)
maze2 17 227 (152)

Random
maze1 9 —
maze2 0 —
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maze1 maze2

Fig. 5. Solutions to the maze problems, evolved by SAFE.

As explained in Section 6, the evolving objective function is a real-valued
tuple [a, b], with a being the distance-to-goal coefficient, and b being the novelty
coefficient. Examining all successful objective functions evolved by SAFE for
maze1 (those that led to a maze solution), we observed that the average of a was
0.85 (sd = 0.16) and the average of b was 0.99 (sd = 0.01); for maze2, average a
was 0.83 (sd = 0.18) and average b was 0.98 (sd = 0.02). Evolution is thus seen
to strike a fairly even balance between being goal-oriented and seeking novelty,
favoring the latter to a small extent. This motivated a final experiment, wherein
we ran the standard evolutionary algorithm, but with the fitness function of
SAFE (Equation 1) and fixed a = b = 0.5. The number of successful runs was
307 for maze1 and 17 for maze2, on par with SAFE and novelty search. Of course,
SAFE’s task is more difficult, given that it is not handed the objective function
but must evolve it.

Recall from Section 5 that the robot’s movement is controlled by two vari-
ables, horizontal – h and vertical – v, each defined as a weighted sum of the
eight sensor values: distright , goalright , distleft , goalleft , distdown , goaldown , distup ,
goalup . An evolved solution is a vector of 16 real values, [p1, . . . , p16], where
[p1, . . . , p8] are the weights used by h, and [p9, . . . , p16] are the weights used by
v. Given that the model is fairly white box in nature (as opposed, e.g., to a
neural network’s black-box essence), we might attempt to examine the evolved
solutions—whose summary is shown in Table 3. For maze1 we note that h’s left
(absolute) sensor values are quite low, perhaps because the start position is close
to the left wall, so there is no point in going left. Also, the right values are high
for both h and v, so apparently right is a good direction. For maze2 we observe
that moving left seems to be favored, and—to a lesser degree—down.
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Table 3. Evolved robotic control parameters—[p1, . . . , p16]—of successful solutions.
Each value is the average (standard deviation) of all successful runs. Parameters are
shown alongside the sensors they weight.

p sensor maze1 maze2

horizontal

p1 distright 0.68 (0.26) -0.27 (0.33)
p2 goalright -0.56 (0.29) 0.04 (0.38)
p3 distleft 0.11 (0.39) -0.82 (0.18)
p4 goalleft -0.04 (0.29) 0.52 (0.4)
p5 distdown -0.65 (0.25) 0.58 (0.42)
p6 goaldown -0.73 (0.2) 0.38 (0.45)
p7 distup 0.45 (0.38) 0.11 (0.2)
p8 goalup 0.33 (0.28) -0.37 (0.37)

vertical

p9 distright 0.65 (0.23) 0.1 (0.1)
p10 goalright 0.62 (0.31) -0.09 (0.45)
p11 distleft -0.4 (0.46) 0.78 (0.15)
p12 goalleft -0.55 (0.31) 0.54 (0.29)
p13 distdown -0.24 (0.46) 0.11 (0.17)
p14 goaldown 0.03 (0.38) -0.15 (0.5)
p15 distup -0.64 (0.34) -0.21 (0.39)
p16 goalup 0.41 (0.3) -0.15 (0.52)

8 Discussion and Concluding Remarks

Aiming to confront the optimization conflation problem—where the objective is
conflated with the objective function—we separated these two entities into two
populations, and presented SAFE, a coevolutionary algorithm to evolve the two
simultaneously. We showed that both the “journey” and the “destination” can
be discovered together, i.e., the solution and the objective function needed to
find it.

Our aim herein has been to provide preliminary proof for a novel idea. As
such, we did not perform extensive experiments on parameter combinations,
although recent research suggests that parameters should not matter too much
[24].

Stanley [17] recently wrote that, “While a good algorithm is sometimes one
that performs well, sometimes a good algorithm is instead one that leads to other
algorithms and new frontiers.” While ours is but a first foray into new territory
we hope it leads to new frontiers. Indeed, there are several exploratory avenues
that come to mind:

– First, we would like to add other and more complex problem domains, hop-
ing to reinforce the promising results presented herein and identify areas
where the SAFE concept is not only competitive but clearly advantageous.
It is of particular interest to demonstrate whether SAFE can adapt itself to
problems where little prior knowledge exists regarding either the objective
or the best path to said objective.
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– The coevolutionary dynamics engendered by SAFE are likely to be quite
interesting and worthy of study in and of themselves. The impact of elements
including elitism approach, run parameters, and convergence criteria are all
worthy of future consideration.

– Our evolving objective function comprises two components, distance-to-
objective and novelty. We could consider other components that might be
added to the mix, e.g., the robot’s distances to walls, its trajectory (behavior)
through the environment [25,26], and so forth.

– We used a simple measure to drive objective-function evolution—genotypic
novelty. Other, possibly better measures might be designed. As noted in
Section 6 we did preliminary work on mutualistic fitness scores for objective
functions, work which—though it did not pan out—we plan to continue.

– Explore the concept of whether having an objective function that changes
over the course of evolutionary search may itself be an important aspect of
evolvability in certain deceptive domains.

Considering the “coadaptations of organic beings to each other” [19], is it
not natural to view the objective function as a constantly shifting, evolving
entity? We speculate that leveraging a combination of open-endedness and co-
evolutionary search may offer a path to solving a variety of future problems
where traditional approaches fail, characterized by deceptive landscapes, high
dimensionality, and a lack of prior knowledge.
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