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A Serial Complexity Measure of Neural Networks

ihe most common methodology used - for the
purpoee of demonstrating a neural network’s ef-

- fectiveness is that of simulation. This entails ver-

0-7803-0999-5/93/303.00 ©1993 [EEE

ifying the proposed network's performance in an
empirical setting rather than from a theoretical
standpoint. More rigorous analysis’ have been
carried out. yielding improved results as to var-
ious aspects of neural networks such as conver-
gence rates and storage capacities. As of yet
there is no common framework for analyzing the
effectiveness of neural networks.

Towards this end we adopt one measure of se-
rial algotithms, namely that of serial computa-
tional complexity and apply it 1o the analysis

A

“ Moshe Sipper

a + . Department of Computer Science

) "7 Bchool of Mathematical Sciences

Sackler Faculty of Exact Sciencéy

K Tel Aviv University -
- 69978, Tel Aviv, Israel
" * e.mail: moshes@math. tou.ac.s
Abstract— _ of neural networks. While such an analysis ig-
: *  nores the patallelism issues inherent in neural
3:: o?z:‘urc;n::t?or?e:::l::il; petworks, it neverthe!ea'u provides us with-n'.pic-
is that of simulation since as ture of the compqtatuonal complexity of a given
of yet there is no common for- -mc'adel‘. Thug suchly measure ma ve as &
mal framework.” Towards this - _guideline for unpleu'lenlatlon and comparison.

end we adopt one measure of se- We use dhe ubiquitous RAM (Random Access
rial algorithms, namely that of Machine) model 1} which may be described in
serial computational complex- .sxmple terms as a Turing machine with 8 RAM
ity and apply it to the analy- (Random Access Memory). The instructiond in "
sis of neural networks. We an- this mode! are executed sequentially, unless con-
alyze various networks and de- - trol flow'is altered by the execution of a branch.
rive their complexity, thus pro- A NP t?tmchon set ?’ “éd (1 wh?re addi-
~ viding insight as to their com- ;:::;;:b;;re:;;":mmgm;;:=‘;1°:
. 4“ %7 putational requirements. however that the ‘weighted sum of the artificial
e L lNTRO!')UCTION neuron nqmrel a’suctession -of such elementary

stepg. )
I1. SERIAL .Cmrf.nxnv of NEURAL
NETWORKS

In this section we analyze various networks l-nd
derive their serial computational complexity.

A. The Hemming network

The Hamming network calculates the Hami'ni:xg B

distance between the input pattern and each

memory pattern, and selects the memory with °.

the smallest distance, which is declared ‘the

winner’. This network is the most straightfor-:
ward associstive memory. Originally presented

i [16, 17, 18], it has received repewed: attention
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, * in recent years {12, 2, 10). ‘The Hamming net- .
- work operates on binary vectou of :tl &:f -

S dep:cted in F:gun 1. %

.1t is composed of two suhneu, The lower sub-
net, denoted the similarify subnet calculates the
e Hmmmgdutmce'betwoenthe input vector and
= - _ . ‘each memory pattern. It oorhub'o{two layers: *
o5 An n-neuton input layer representing #-bit input

‘patterns; and an m-neuron memory layer

- each Reuron repmseitx one memory. Memory
- storage| is achieved via the connection weights.
" entering the neuron. The upper subnet, de-
. noted-as the.winner-take-all { Wf‘A) computes - -
" “the mémery whiclis &t mmimn!ﬁﬁmmmg dis- . -
" tance from the input. It consists of a fully con-
‘nected m-neugon topology. The similarity nub—"

~ - mnet'is feedforward wh
B mrum i

~ work consists of a.mgm g wﬂghts in the follow-

Figure 1: The Hammmgnehmrk‘ % : .:_vc:genoe

The mmahuhon phase oI' -t.he Hamrmng net- _'

/©; is the threshold in that node.,
2} is element i-of exemplar j.

" In the upper subn‘et_:

wr o R L
| .i"uf { -t _:g;z = ¢'<I_1;m

_ : tu is the connechon weight from- 'node k to
* ‘node | in the upper subnet.

All Lhreshoids are zero in this aubnet

Tﬁ.e’ Ruii-p_hn_se conaista-of -iicrating um.il con-

u,(m}-mu,tr}—ezumn o

lr#:

l<3,k<m N .--
~uj(t)is the. output of nodc 3 in the upper net-

~work; attime t.

~ fois a thraahold Iog;c funct.lon '
‘The process is repeated until convergerice. At
l.'hls time only one :‘tode remains positive. . .

The tota! worst, case parallel running time ha.s e
‘been shown to be O(min(mn)) [5]. The serial

complexity-is therefore O(m3In(mn)) -and thus

“the total se‘rlai run nme complextty is O(mn + -

m? In(mn)).

" ‘The: total - ‘sefial complexity (mmn]uauon s
; phase + run phase ) of the Hamming netwo
" is therefore O(mn + m*In

B. The Hopﬁel'd nctwur&

The Horpﬁeltr‘nctwork (M) is among the most
tammonly_researched neural networks and has

i “‘5 manner [10] e o ¥ been analyzed in depth. We examined an n-
et _ _neuron, fully connected network. The initializa-
e e In "h‘e I-qwer_ s_ubnet:' 2 " - tion phase consists of assigning synaptic weights -
o wy=E2 v 8yEafd N ; {10}
e 1<|<nl<;<m' 0 : ;
G the connection weight from node ito g M 7 zl z; a;& 4
oA RER node _| in t.he lower subnet > e dai I TETELE S
S _ B b
2E e o

Thetotalcomplmtyofzhls phase 1s()(mn+ =1
'."_-m’) L '




S is the sample set size.

1<ij<n

t,; is the nynapnc weight from node i to node
j

z! is element i of class s exempla:r and ‘is bi-

nary valued ("l" or "-17). \‘

The complexity of this phase is O(Sn?).

The Run phase consists of ibe'ut.ing unii!’qm- .

vergence: -\

) -~

Cuilt+ 1) = S buitt)
=]

1<j<n

ui(2) is the output of node i at time ¢.

Ja is the hard limiter function.

The process is repeated until convergence.
Convergence is defined as the time at which node
outputs remain unchanged. .

Fhe' parallel Minning time has been shown to
be O(log(logn)) [9]. Thus the Itotﬁl serial com-
plexity of the run phase is: Of

~

The total serial complexity
work is therefore O(Sn? + n® 68

C. A multi-layer, back-progagation trained
peroepiron

One of the most common models of neural net-
‘works is that of a multi-layer beck-propagation
trained perceptron ([15]). This model has re-
ceived wide attention ([8. 11. 10]) and has been
studied extensively. We consider a three'layer
percéptron with n neurons in the input layer,.!
neurons in the hidden layer and m neurons in
the output layer. e
The complexity of the bukpropggﬂ.non net-
work i1s due entirely to the learn phase, which
1s iterative. A forward pass is of complexity
O(l(n + m)) while a backward pass which-in-
volves the error computations is-O(inm) and
thus the total complexity is O(Inm) for a sin-
gle forward and backward pass. As of yet there
is no formal result as to the convergence rate.

-

AN

D. A second order network

High order networks, which replace the linear
neyron with a polynomial of the form {w; +
2] wijz; + zj, wijiz;zr + ...} have been an
object of research in recent years. It was demon-
strated that such networks achieve improved
learning rates ([6, 13]) and increased storage ca-
pacity ([14, 3]). In many cases it is easier to train .
a high order network than a multi-layer network
since training the hidden layers is more difficult
(13)).
We examined a second order, fully connected,
two layer network composed of an n-neuron in-
put {ayer and an meheuron output layer. The ini-
tialization phase-consists of a 'one-shot’ Hebbiax..
rule [6] and its complexity i6 O(Smn?) where S
is the size of the:sample set. The run- phue
consists of a single feedforward sweep and is
O(mn?). Thus the.total complexity of the net- .
work is O(Smn?). .

I[l. CONCLUSIONS

Table 1 summarises our findings of the previous
"~ section. We can compare the complexities of the
backpropagation network, for a given learn time
of, say Tlj,p, with that of the second order- pet-
work. Thus, O(Smn?) < O(TIiepinm) yields:

-

Such a comparison reveals the point at which it
is more efficient to use a two-layered second or-
"der network instead of a three-layered first order
network. This point occurs when the number of
hidden layers exceeds the number given by the
above expression. ’ ‘

It. is also possible to compare the Hopfield
model and the Hamming model. In an opti-
__mal setting (i.e. where the network’s memory
capaclty is not exceeded) n = O(logm) for the
- Hamming network {4} and n = O(m), §$ = O(m)
for the Hopfield network !9] Thus the Hamming
serial complexity is O(m log(mlogm)) and the
Hopfield nnul complexity is O(m?3), so that the
Hopfield etwork s serial complexity is lower (l e.
better). .

The’'main mouvnnon of the annlysis cuned
out in this paper has been to derive a formal
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| Serial Complexity j

The Huﬁﬁn; network ’O(mn + m®In(mn))

The Hopfield network O(Slnz + n’ log(log n))

Tat;le 1: Analysis results of the networks i;l, the

previous section . .

! computational complexity measure of neural net-

works. Although in essence we measure the com-
plexity of the serial implementation we feel that ,
insight is gained as to the computational require-
ments of the various networks. It is hoped that
other measures will be devised which will be used
in the formal analysis of neural networks.
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