
International Journal of Modern Physics C, Vol. 9, No. 7 (1~) 899-902
@ World Scientific Publishing Company

A SIMPLE CELLULAR AUTOMATON THAT SOLVES
THE DENSITY

We show that there exists a simple solution to the density problem in cellular automata,
under fixed boundary conditions, in contrast to previously used periodic ones.
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Cellular automata (CA) are discrete, dynamical systems that perform computa-
tions in a distributed fashion on a spatially extended grid. The dynamical behavior
of a CA may give rise to emergent computation, referring to the appearance of
global information processing capabilities that are not explicitly represented in the

system's elementary components nor in their local intercoWlections.l As such, CAs
offer an austere yet versatile model for studying natural phenomena, as well as a

powerful paradigm for attaining fine-grained, massively parallel computation.
An example of such emergent computation is to use a CA to determine the

global density of bits in an initial state configuration. This problem, known as
density classification, has been studied quite intensively over the past few years. In
this short communication we describe two previous versions of the problem along
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with their CA solutions, and then go on to show that there exists yet a third version
- which admits a simple solution.

Version I. In the original statement of the problem,2 a one-dimensional, two-
state CA is presented with an arbitrary initial configuration of states (the input),
and should converge in time to a state of all Is if the initial configuration contains
a density of Is > 0.5, and to all Os if this density < 0.5; for an initial density of 0.5,
the CA's behavior is undefined (Fig. 1 (I». The final configuration is considered as
the output of the computation. Spatially periodic boundary conditions are used,
resulting in a circular grid. Land and Belew3 proved that for a one-dimensional
grid of fixed size N, and for a fixed radius r ?; 1, there exists no two-state CA rule
which correctly solves this problem version, i.e., correctly classifies all possible initial
configurations. Recently, researchers have focused on the use of artificial evolution
techniques, demonstrating that high-performance CAs can be evolved to solve this
version of the problem.4-1 These CAs do not perform perfect classification, i.e.,
they misclassify some of the initial configurations (the CA solution demonstrated
in Fig. 1(1) does not in fact classify correctly all initial configurations).

Version II. Capcarrere, Sipper, and Tomassini8 showed that a perfect one-
dimensional, two-state, radius r = 1 CA density classifier does exist, upon defining

a different output specification. The CA rule in question is defined as follows:

{ 8i-l(t) if 8i(t) = 0
Si(t + 1) = ,

8i+l(t) if Si(t) = 1
where Si(t) is the state of cell i at time t (this rule is numbered 184 in Wolfram's
CA numbering scheme9). Again, periodic boundary conditions are assumed.

Upon presentation of an arbitrary initial configuration, the N -cell grid relaxes
to a limit-cycle, within r N /21 time steps, that provides a classification of the initial
configuration's density of Is: if this density> 0.5 (respectively, < 0.5), then the
final configuration consists of one or more blocks of at least two consecutive Is (Os),

(I) (II) (Ill)

Fig. 1. CA solutions to three versions of the density classification problem. Grid size is N = 149.
White squares reprMent cells in state 0, black squares repr_nt cells in state 1. The pattern of
state configurations is shown through time (which increases down the page). The initial density
in all three examples is > 0.5.
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interspersed by an alternation of Os and Is; for an initial density of exactly 0.5,
the final configuration consists of an alternation of Os and Is. The computation's

output is given by the state of the consecutive block (or blocks) of same-state cells

(Fig. I(II». Capcarrere, Sipper, and Tomassini8 proved that this rule performs
perfect density classification (including the density=0.5 case). They also established

that the seemingly more complex output specification is actually as simple as the
previous one. (Interestingly, it has recently been shown that one can obtain the
output specified in Version I by applying rule 184 for N /2 time steps, followed by

application of rule 232 for N /2 time ste~.10)

Version III. We now describe yet another modification of the original problem

(version I), with (1) a different output specification, as well as (2) fixed boundary
conditions, rather than the periodic ones previously assumed. These two modifica-

tions give rise to a simple density classifier. Consider a one-dimensional, two-state,
r = 1, rule-184 CA with fixed boundary cells: the left cell is fixed at state 0, and the

right cell is fixed at state 1. The finite grid of size N (boundary cells excluded) will
converge in at most N - 1 time steps to a configuration 0" 1/3, where a, {3 denote

the number of Os and Is at time step 0, respectively; a, {3 E {o,..., N}, a+{3 = N.

In the cases where N is odd, the density classification of the input is attained by

considering the middle cell's final state: 0 signifies a majority of Os in the input, 1
signifies a majority of Is; for N even, we consider the two middle cells: 00 signifies

a majority of Os in the input, 11 signifies a majority of Is, 01 signifies equality,
and 10 is impossible (Fig. l(lli». To show that the above property holds for the

fixed-boundaries, rule-l84 CA we proceed in two stages.

(1) The density of a configuration does not change from time step t to t + 1. To see
this we express the 8 next-state bits of rule 184 (i.e., the rule table) as follows:
(a) OOx H- 0, (b) x11 H- 1, (c) xl0 H- 0, (d) lOx H- 1, where x E {O, I}. For
each cell, exactly one of the four possibilities applies at time step t: (a) and (b)
do not change the cell's state, thereby causing no change in density, while (c)
applies iff (d) applies to the adjacent cell, resulting again in density unchanged.
(This argument also holds for the cells adjacent to the border cells.)

(2) As long as there is a cell pair with states 10 then the configuration is "unstable"
- the next time step will result in the interchange of both cells' states, i.e.,

the 1 "moves" to the right and the 0 moves to the left. From the rule one can
directly observe that a 1 cannot travel to the left and a 0 cannot travel to
the right. Essentially, there is a constant flow of Is to the right, as long as a
10 pair exists. The boundary conditions act to "block" this flow of Os and Is
(as opposed to periodic conditions where these continue to cycle throughout
the grid). Thus, given density conservation, one can see that the only stable
configuration, toward which the CA converges, is 0°113. It is straightforward to
see that the worst-case convergence time is N - 1.
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We note that, serendipitously, this CA also solves another, seemingly more dif-
ficult problem, known as ordering.5 This is a sorting problem in which the CA
must place all Os on the left and all Is on the right, i.e., converge toward the 00lfJ
configuration. Sipper5 showed that no one-dimensional, r = 1 CA with periodic

boundary conditions can solve this problem.
In summary, we have shown that by changing the output specification and

the boundary conditions, with respect to the original problem statement, a simple
density classifier can be attained, as well as a sorter.

Density is a global property of a configuration (the Is can be distributed
throughout the grid), whereas a small-radius CA relies solely on local interactions.
This holds true for all three versions of the problem, yet its solutions can be either
impossible (version I) or easy (versions II and III); thus, density in itself is not an
intrinsically hard problem to compute. This raises the general issue of identifying
intrinsically hard problems for such local systems, and distinguishing them from
those that can be transformed into easy problems.
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