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Abstract. In recent years we are witness to a growing number of re-

searchers who are interested in novel computational systems based on

principles that are entirely di�erent than those of classical computers.

Though coming from disparate domains, their work shares a common

computational philosophy, which I call cellular computing. Basically, cel-

lular computing is a vastly parallel, highly local computational paradigm,

with simple cells as the basic units of computation. It aims at provid-

ing new means for doing computation in a more e�cient manner than

other approaches (in terms of speed, cost, power dissipation, information

storage, quality of solutions), while potentially addressing much larger

problem instances than was possible before|at least for some applica-

tion domains. This paper provides a qualitative exposition of the cellular

computing paradigm, including sample applications and a discussion of

some of the research issues involved.

1 What is cellular computing?

The reigning computing technology of the past �fty years, often referred to as the

von Neumann architecture, is all but ubiquitous nowadays. Having proliferated

into every aspect of our daily lives, the basic principle can be summed up as

follows: one complex processor that sequentially performs a single complex task

(at a given moment). In recent years we are witness to a growing number of

researchers who are interested in novel computational systems based on entirely

di�erent principles. Though coming from disparate domains, their work shares

a common computational philosophy, which I call cellular computing.

At the heart of this paradigm lie three principles:

1. Simple processors, referred to as cells.

2. A vast number of cells operating in parallel.

3. Local connections between cells.

Cellular computing is thus a vastly parallel, highly local computational paradigm,

with simple cells as the basic units of computation.

Let us take a closer look at what is meant by these three principles. Firstly,

the basic processor used as the fundamental unit of cellular computing|the

cell|is simple. By this I mean that while a current-day, general-purpose proces-

sor is capable of performing quite complicated tasks, the cell can do very little

in and of itself. Formally, this notion can be captured, say, by the di�erence

between a universal Turing machine and a �nite state machine. In practice, our
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experience of �fty years in building computing machines has left us with a good

notion of what is meant by \simple."

The second principle is vast parallelism. Though parallel computers have

been built and operated, they usually contain no more than a few dozen proces-

sors. In the parallel computing domain, \massively parallel" is a term usually

reserved for those few machines that comprise a few thousand (or at most tens

of thousands) processors. Cellular computing involves parallelism on a whole

di�erent scale, with the number of cells measured at times by evoking the expo-

nential notation, 10x. To distinguish this huge number of processors from that

involved in classical parallel computing, I shall use the term vast parallelism (as

opposed to \mere" massive parallelism). This quantitative di�erence leads, as

I shall argue, to novel qualitative properties, as nicely captured by the title of

a 1972 paper by Philip Anderson \More is Di�erent" [2]. (Note that while not

all works presented to date necessarily involve vast parallelism, partly due to

current technological limitations, this underlying principle still stands �rm).

The third and �nal distinguishing property of cellular computing concerns

the local connectivity pattern between cells. This means that any interactions

taking place are on a purely local basis|a cell can only communicate with a

small number of other cells, most of which (if not all) are physically close by.

Furthermore, the connection lines usually carry only a small amount of infor-

mation. One implication of this principle is that no one cell has a global view of

the entire system|there is no central controller.

Combining these three principles results in the equation cellular computing =

simplicity + vast parallelism + locality. It is important to note that changing any

single one of these terms in the equation results in a totally di�erent paradigm;

thus, these three axioms represent necessary conditions of cellular computing

(Figure 1).

Cellular computing is at heart a paradigm that aims at providing new means

for doing computation in a more e�cient manner than other approaches (in

terms of speed, cost, power dissipation, information storage, quality of solu-

tions), while potentially addressing much larger problem instances than was

possible before|at least for some application domains. This paper describes the

essence of cellular computing; I provide a qualitative exposition, my goal being to

convince the reader of the viability of this emerging paradigm. Toward this end I

�rst present in the next section four representative examples of cellular comput-

ing, noting that in spite of their di�erences they all share in common the above

three principles. Then, in Section 3 I shall discuss some general issues, followed

by concluding remarks in Section 4. (In the full version, I expound upon many

of the issues underlying cellular computing, such as properties of the di�erent

models, system characteristics, and more [23].)

2 Four examples of cellular computing

To get an idea of what is meant by cellular computing I shall set forth four

examples in this section. Though di�ering in many ways, e.g., the underlying

654 M. Sipper



Finite-State
Machines

Shared-Memory
Parallel
Computing

Complex

Lo
ca
l

S
e
r
i
a
l

Gl
ob
al

P
a
r
a
l
l
e
l

Distributed
Computing

Simple

Cellular
Computing

General-Purpose

Architecture
Serial

Neural Networks
Fully Connected

Partially Connected
Neural Networks

Fig. 1. Simple + Parallel + Local = Cellular Computing. Changing any single one

of these terms in the equation results in a totally di�erent paradigm, as shown by

the above \computing cube." Notes: (1) Cellular computing has been placed further

along the parallelism axis to emphasize the \vastness" aspect (see text). (2) Arti�cial

neural networks can be divided into two classes (for our purposes): fully connected

architectures, where no connectivity constraints are enforced (e.g., Hop�eld networks,

Boltzmann machines), and partially connected networks (e.g., the Kohonen network,

which exhibits local connectivity between the neurons in the feature map, though each

of these is still connected to all input neurons).

model, the problems addressed, input and output encoding, and more, I argue

that they all sprout from the common cellular-computing trunk. (To facilitate

their referencing each example is given a three-letter mnemonic.)

1. A cellular adder (ADD). Cellular automata are perhaps the quintessen-

tial example of cellular computing, as well as the �rst to historically appear on

the scene. Conceived in the late 1940s by Ulam and von Neumann, the model

is that of a dynamical system in which space and time are discrete [28, 29]. A

cellular automaton consists of an array of cells, each of which can be in one of

a �nite number of possible states, updated synchronously in discrete time steps,

according to a local, identical interaction rule. The state of a cell at the next

time step is determined by the current states of a surrounding neighborhood of

cells. This transition is usually speci�ed in the form of a rule table, delineating

the cell's next state for each possible neighborhood con�guration. The cellular

array (grid) is n-dimensional, where n = 1; 2; 3 is used in practice.

In a recent work, Benjamin and Johnson [3] presented a cellular automaton

that can perform binary addition: given two binary numbers encoded as the

initial con�guration of cellular states, the grid converges in time towards a �nal

con�guration which is their sum. The interesting point concerning this work is
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the outline given therein of a possible wireless nanometer-scale realization of the

adding cellular automaton using coupled quantum dots. (As pointed out in [3],

the device is a nanometer-scale classical computer rather than a true quantum

computer. It does not need to maintain wave function coherence, and is therefore

far less delicate than a quantum computer).

2. Solving the contour extraction problem with cellular neural net-

works (CNN). A cellular neural network can be regarded as a cellular automa-

ton where cellular states are analog rather than discrete, and the time dynamics

are either discrete or continuous [5{7]. Since their inception, almost a decade

ago, they have been studied quite extensively, resulting in a lore of both theory

and practice. As for the latter, one major application area is that of image pro-

cessing. For example, in the contour extraction problem the network is presented

with a gray-scale image and extracts contours which resemble edges (resulting

from large changes in gray-level intensities). This operation, oft-used as a pre-

processing stage in pattern recognition, is but one example of the many problems

in the domain of image processing solved by cellular neural networks.

3. Solving the directed Hamiltonian path problem by DNA com-

puting (DNA). The idea of using natural or arti�cial molecules as basic com-

putational elements (i.e., cells) has been around for quite some time now (e.g.,

[9, 10]). The decisive proof-of-concept was recently given by Adleman [1] who

used molecular biology tools to solve an instance of the directed Hamiltonian

path problem: given an arbitrary directed graph the object is to �nd whether

there exists a path between two given vertices that passes through each vertex

exactly once. Adleman used the following (nondeterministic) algorithm to solve

this hard (NP-complete) problem:

Step 1: Generate random paths through the graph.

Step 2: Keep only those paths that begin with the start vertex and terminate

with the end vertex.

Step 3: If the graph has n vertices, then keep only those paths that enter exactly

n vertices.

Step 4: Keep only those paths that enter all of the vertices of the graph at least

once.

Step 5: If any paths remain, say \Yes"; otherwise, say \No."

The key point about Adleman's work is the use of DNA material along with

molecular biology tools to implement the above algorithm. Vertices and edges

of the graph were encoded by oligonucleotides (short chains of usually up to

20 nucleotides). In the test tube these would then randomly link up with each

other, forming paths through the graph (step 1), to be then subjected to a

series of molecular \sieves" that essentially carried out the remaining steps. The

extremely small cell size in this form of cellular computing (a DNA molecule)

gives rise to vast parallelism on an entirely new scale. Adleman estimated that

such molecular computers could be exceedingly faster, more energy e�cient, and

able to store much more information than current-day supercomputers (at least

with respect to certain classes of problems).
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It could be argued that DNA molecules violate the simplicity-of-cells prin-

ciple. However, while such molecules may exhibit complex behavior from the

biologist's standpoint, they can be treated as simple elements from the compu-

tational point of view. As put forward by Lipton [17]: \Our model of how DNA

behaves is simple and idealized. It ignores many complex known e�ects but is an

excellent �rst-order approximation." Indeed, it seems that in DNA computing

the basic cell (DNA molecule) is typically treated as a simple elemental unit, on

which a small number of basic operations can be performed in the test tube [17].

This is similar to several other instances in computer science where irrelevant

low-level details are abstracted away; for example, the transistor is usually re-

garded as a simple switch, with the complex physical phenomena taking place

at the atomic and sub-atomic levels being immaterial.

4. Solving the satis�ability problem with self-replicating loops

(SAT). In his seminal work, von Neumann showed that self-replication, previ-

ously thought to exist only in nature, can be obtained by machines [28]. Toward

this end he embedded within a two-dimensional cellular-automaton \universe"

a machine known as a universal constructor-computer, able both to construct

any other machine upon given its blueprint (universal construction) and also

to compute any computable function (universal computation). Here, the term

\machine" refers to a con�guration of cellular-automaton states; indeed, the

ability to formally describe such structures served as a major motivation for von

Neumann's choice of the cellular-automaton model. Self-replication is obtained

as a special case of universal construction, when the machine is given its own

blueprint, i.e., instructions to build a universal constructor. This latter's com-

plexity prohibited its implementation, and only partial simulations have been

carried out to date. Langton [16] showed that if one renounces universal con-

struction, stipulating but self-replication, a much simpler, and entirely realizable

structure can be obtained. His so-called self-replicating loop does nothing but

replicate. More recently, researchers have shown that one can embed a program

within the loop, thus having the structure replicate as well as execute a pro-

gram [20,27]. The motivation for such programmed replicators is the possibility

of obtaining a vastly parallel, cellular computing environment.

Chou and Reggia [4] have recently shown that self-replicating loops can be

used to solve the NP-complete problem known as satis�ability (SAT). Given a

Boolean predicate like (x1 _ x2 _ :x3) ^ (:x1 _ :x2 _ x3), the problem is to

�nd the assignment of Boolean values to the binary variables x1, x2, and x3

that satis�es the predicate, i.e., makes it evaluate to True (if such an assignment

exists). In [20, 27] the program embedded in each loop is copied unchanged

from parent to child so that all replicated loops carry out the same program.

Chou and Reggia took a di�erent approach in which each replicant receives a

distinct partial solution that is modi�ed during replication. Under a form of

arti�cial selection, replicants with promising solutions proliferate while those

with failed solutions are lost. The process is demonstrated in Figure 2. This

work is interesting in that it can be considered a form of DNA computing in

a cellular automaton, using self-replicating loops in a vastly parallel fashion. A
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molecular implementation of this approach might be had by using synthetic self-

replicators, like those described, e.g., by Rebek, Jr. [21]. Lipton [17] presented

a DNA-computing solution to the SAT problem, similar to Adleman's method

discussed above. He noted that \biological computations could potentially have

vastly more parallelism than conventional ones." [17]
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Fig. 2. Solving the satis�ability (SAT) problem with self-replicating loops. Shown

above for a three-variable problem: (:x1 _ x3) ^ (x1 _ :x2) ^ (x2 _ :x3). The initial

con�guration of the two-dimensional cellular automaton contains a single loop with

three embedded binary bits (marked by As). This loop self-replicates in the cellular

space, with each daughter loop di�ering by one bit from the parent, thus resulting

in a parallel enumeration process. This is coupled with arti�cial selection that culls

un�t solutions, by eliminating the loops that represent them (each loop represents one

possible SAT solution). In the end only two loops remain, containing the two truth

assignments for the predicate in question: x1; x2; x3 = 0; 0; 0 or 1; 1; 1.

3 Discussion

In this section I shall discuss a number of issues related to cellular computing,

ending with a presentation of some possible avenues for future research.

Cellular computing and parallel computing. It could be claimed that

the concept of cellular computing is not new at all, but is simply a synonym

for the longstanding domain of parallel computing. In fact, the two domains

are quite disparate in terms of the models and the issues studied. Parallel com-

puting traditionally dealt with a small number of powerful processors, studying

issues such as scheduling, concurrency, message passing, synchronization, and

more. This clearly di�ers from cellular computing, whose underlying philosophy

is quite distinct from that of parallel computing (Figure 1). The only area of in-

tersection may be the few so-called \massively parallel machines" that have been

built and studied by parallel computing practitioners (e.g., [14]). As noted in

Section 1, cellular computing has the potential of exhibiting vastly parallel com-

putation, giving rise to an entirely new phenomenology. (Interestingly, models
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such as cellular automata were usually regarded by hard-core parallel computing

practitioners as being \embarrassingly parallel" and therefore uninteresting.)

Considering the domain of parallel computing one can observe that decades

of research have not produced the expected results|parallel machines are not

ubiquitous and most programmers continue to use sequential programming lan-

guages. I believe that one of the major problems involves the domain's ambitious

goal (at least at the outset) of supplanting the serial computing paradigm. The

parallel computing lesson for cellular computing practitioners might thus be that

they should not aim for an all-encompassing, general-purpose paradigm, which

will replace the sequential one (at least not at present...); rather, one should

�nd those niches where such models could excel. There are already a number

of clear proofs-of-concept, demonstrating that cellular computing can e�ciently

solve di�cult problems.

Next, I wish to discuss what I call the slow fast train. Consider a 300-kmh fast

train arriving at its destination, with passengers allowed to disembark through

but a single port. This is clearly a waste of the train's parallel exit system, con-

sisting of multiple ports dispersed throughout the train. This metaphor, dubbed

the slow fast train, illustrates an important point about parallel systems, namely,

their potential (ill-)use in a highly sequential manner. Note that for most cellular

computing models, it is not too di�cult to prove computation universality by

embedding some form of serial universal machine. This proves that, in theory,

the model is at least as powerful as any other universal system. However, in

practice, such a construction defeats the purpose of cellular computing by com-

pletely degenerating the parallelism aspect. Thus, on the whole, one wants to

avoid slowing the fast train.

Cellular computing and complex systems. In recent years there is a

rapidly growing interest in the �eld of complex systems [11,15,19]. While there

are evident links between complex systems and cellular computing it should be

noted that the two are not identical, the former being a scienti�c discipline,

the latter primarily an engineering domain. As is the time-honored tradition of

science and engineering, fruitful cross-fertilization between the two is manifest.

Research themes. Finally, I wish to outline a number of themes that present

several possible avenues for future research.

{ As noted in Section 1, cellular computing is a computational paradigm that

underlies a number of somewhat disparate domains. In this respect, we wish

to gain a deeper understanding of the commonalities and di�erences between

the di�erent approaches. Among the important questions are: What classes

of computational tasks are most suitable for cellular computing? Can these

be formally de�ned? Can informal guidelines be given? Can we relate speci�c

properties and behaviors of a certain model with the class of problems it is

most suitable for? And, vice versa, for a given problem (or class of problems),

how do we choose the most appropriate cellular model?

{ Adaptive programming methodologies for cellular computing, including evo-

lutionary algorithms [13,22] and neural-network learning [8].

{ Most real-world problems involve some degree of global computation. Thus,
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understanding how local interactions give rise to global (\emergent") com-

putational capabilities is a central research theme [12]. Furthermore, it is

important to explore the application of adaptive methods to the program-

ming of such behavior [18,22].

{ What are the major application areas of cellular computing? Research to

date has raised a number of possibilities, including: image processing, fast

solutions to some NP-complete problems, generating long sequences of high-

quality random numbers [24,25]|an important application in many domains

(e.g., computational physics and computational chemistry), and, �nally, the

ability to perform arithmetic operations (e.g., ADD example) raises the pos-

sibility of implementing rapid calculating machines on a very small (nano)

scale.

{ The scalability issue. Cellular computing potentially o�ers a paradigm that

is more scalable than classical ones. This has to do with the fact that con-

nectivity is local, and there is no central processor that must communicate

with every single cell; furthermore, these latter are simple. Thus, adding cells

should not pose any major problem, on the surface. However, in reality this

issue is not trivial both at the model as well as the implementation level. As

noted by Sipper [22], simple scaling, involving a straightforward augmenta-

tion of resources (e.g., cells, connections), does not necessarily bring about

task scaling, i.e., maintaining of (at least) the same performance level. Thus,

more research is needed on the issue of scalability.

{ Fault tolerance. Lipton [17] noted that: \The main open question is, of

course, if one can actually build DNA computers based on the methods de-

scribed here. The key issue is errors. The operations are not perfect." This

motivated, e.g., Deaton et al. [13] to apply evolutionary techniques to search

for better DNA encodings, thus reducing the errors during the DNA com-

putation. Sipper, Tomassini, and Beuret [26] studied the e�ects of random

faults on the behavior of some evolved cellular automata, showing that they

exhibit graceful degradation in performance, able to tolerate a certain level

of faults (see also references therein to other works on faults and damage in

cellular models).

{ Novel implementation platforms, such as recon�gurable processors (digital

and analog), molecular devices, and nanomachines.

4 Concluding remarks

Cellular computing is a vastly parallel, highly local computational paradigm,

with simple cells as the basic units of computation. This computational paradigm

has been attracting a growing number of researchers in the past few years, pro-

ducing exciting results that hold prospects for a bright future. Though several

open questions yet remain, it is always encouraging to consider the ultimate

proof-of-concept: nature.
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