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We analyze in detail the performance of a Hamming network clas-
sifying inputs that are distorted versions of one of its m stored
memory patterns. The activation function of the memory neurons
in the original Hamming network is replaced by a simple threshold
function. The resulting Threshold Hamming Network (THN) cor-
rectly classifies the input pattern, with probability approaching I,
using only O(mlnm) connections, in a single iteration. The THN
drastically reduces the time and space complexity of Hamming Net-
work classifiers.

1 Introduction

Originally presented in (Steinbuch 1961, Taylor 1964) the Hamming network (HN)
has received renewed attention in recent years (Lippmann et. al. 1987, Baum et.
al. 1988). The HN calculates the Hamming distance between the input pattern
and each memory pattern, and selects the memory with the smallest distance. It
is composed of two subnets: The similarity subnet, consisting of an n-neuron input
layer connected with an m-neuron memory layer, calculates the number of equal bits
between the input and each memory pattern. The winner-fake-all (WTA) subnet,
consisting of a fully connected m-neuron topology, selects the memory neuron that
best matches the input pattern.
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The similarity subnet uses mn connections and performs a single iteration. The
WTA subnet has m2 connections. With randomly generated input and memory
patterns, it converges in 8(m In(mn)) iterations (Floreen 1991). Since m is ex-
ponential in n, the space and time complexity of the network is primarily due to
the WTA subnet (Domany &; Orland 1987). We analyze the performance of the
HN in the practical scenario where the input pattern is a distorted version of some
stored memory vector. We show that it is possible to replace the original activa-
tion function of the neurons in the memory layer by a simple threshold function,
and completely discard the WTA subnet. If the threshold is properly tuned, only
the neuron standing for the 'correct' memory is likely to be activated. The result-
ing Threshold Hamming Network (THN) will perform correctly (with probability
approaching 1) in a single iteration, using only O( m In m) connections instead of
the O(m2) connections in the original HN. We identify the optimal threshold, and
measure its performance relative to the original HN.

2 The Threshold Hamming Network

We examine a HN storing m + 1 memory patterns £.", 1 ~ p ~ m + 1, each
being an n-dimensional vector of :i:l. The input pattern z is generated by selecting
some memory pattern £." (w.l.g., £.m+l), and letting each bit Zi be either £.r or
-£.r with probabilities a and (1 - a) respectively, where a > 0.5. To analyze this
HN, we use some tight approximations to the binomial distribution. Due to space
considerations, their proofs are omitted.

Lemma 1.
Let X'"'" Bin(n, p). If Zn are integers such that liTnn"'~~ = fJ E (p, 1), then

1-p ,8 1-,8P(X ~ zn) ~ 1')_- Q/1 Q\ exp{ -n(,8ln - + (1 -.8) In -
1 ]} (1)

(1- J)y21rnfJ(l-fJ) p -p .

in the sense that the ratio between LHS and RHS converges to 1 88 n - 00. For
the special case p = !' let G (fJ) = In 2 + fJ In fJ + (1 - fJ) In( 1 - fJ), then

Lemma 2.
Let Xi '" Bin( n, !) be independent,

,,'

~;. ;

;,~: '

~t

~~~ !

t,

then

Lemma 3.
Let Y """ Bin(n,o) with a > !' let (Xi) and "Y be as in Lemma 2, and let '1 e(O, 1).
Let xn be the integer closest to n{J, where

~
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exp{ -nG({3)} .P(X ~ 'Zn) ~ (2 - ')v'2i=n{3(1 - {3) (2)

"YE (0,1), and let xn be as in Lemma 1. If

m = (2 - ~)/2;~1="'P) (In ~) enG(,6>, (3)

(4)P(maz(X11 X2J'" I Xm) < Zn) ~ "Y

R - J~!I~~.(l- Q) 1
f,I-Q- z,,--

n 2n
(5)
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and z" is the '7 - quantile of the standard normal distribution, i.e.,

1 j z. 2
'7 = - e-~ /2dz (6)

..;2"i - 00

Then, if Y and (Xi) are independent
P (maz,(X1, X2,.'., Xm) < Y) ?: P(maz(X1. X21' .', Xm) < zn ~ Y) ~ 1'1 (7)

~ n - 00, for m as in (3).

Based on the above binomial probability approximations, we can now propose and
analyze a n-neuron Threshold Hamming Network (THN) that classifies the input
patterns with probability of error not exceeding (, when the input vector is generated
with an initial bit-similarity a: Let Xi be the similarity between the input vector
and the j'th memory pattern (1 < j ~ m), and let Y be the similarity with
the 'correct' memory pattern F.m+r: Choose "Y and '7 so that "Y'7 ~ 1 - (, e.g"
"Y = '7 = Jm; determine fJ by (5) and m by (3). Discard the WTA subnet, and
simply replace the neurons of the memory layer by m neurons having a threshold
Zn , the integer closest to nfJ, If any memory neuron with similarity at least zn
is declared 'the winner', then, by Lemma 3, the probability of error is at most £,
where 'error' may be due to the existence of no winner, wrong winner, or multiple
Winners.

3 The Hamming Network and an Optimal Threshold
Hamming Network

We now calculate the choice of the threshold Xn that maximizes the storage ca-
pacity m = m(n,t",Q). Let 4J (~) denote the standard normal density (cumulative
distribution function), and let r = 4J/(1-~) denote the corresponding failure.rate
function. Then,

Lemma 4.
The optimal proportion between the two error probabilities is

which we will denote by 6.

Proof:
Let M = maz(Xl,X2,".'Xm), and let Y denote the similarity with the
'correct' memory pattern, as before. We have seen that P(M < z) ~
exp{ -m exp.{ -nG(,8)} .1. }. Since G'(/3) = In -!-' then by Taylor expansion

V2I'n,8(1-P)(2-;) ~

P(M < z) = P(M < Zo + z - zo) ~ exp{ -mexp{ -n[G(,8 + 7)]}} ~
y21f'n{3(1 - ,8)(2 - t)

1 - 'Y r( z" )14 ~ vna(l-=Q} In ~ I (8)

~ ).0-. (9)



(in accordance with Gnedenko extreme-value distribution of type 1 (Leadbetter et.
al. 1983). Similarly,

P(Y < .zo) = exp{ln P(Y < .zoo +.zo - .zoo)} ~

t;(z) .zo - .zoo .zo - .zoo

P(Y < .zoo) exp{ ~ ( ) F - \} = (1 - ,,)exp{r(z) 1__/1 --\} (10)
., z vna(1- a) vna(1- a)

'where ~ is the standard normal density function, c) is the standard normal cumu-
lative distribution function, c)- = 1 - c) and r = -j. is the corresponding failure
rate function. The probability of correct recognition using a threshold % can now
be expressed as

P(M < %)P(Y:?: %) = "Y(~).o-.(I- (1- ,,)exp{r(z)~~~ ~}) (11)
yno\l- 0)

We differentiate expression (11) with respect to %0 - %, and equate the derivative
at %0 = % to zero, to obtain the relation between "Y and " that yields the optimal
threshold, i.e., that which maximizes the probability of correct recognition. This
yields . .

We now approximate

r(z)
1-'Y~-ln'Y~ (1-,,)

vna(l- a) In ~

and thus the optimal proportion between the two error probabilities is

~ - r( z) - 6"1-'1 ~ vna(l-a)ln~ - .

0

Baaed on Lemma 4, if the desired probability of error is £, we ch~

We start with "Y = '1 = v'r-=f, obtain .8 from (5) and 6 from (8), and recompute '1
and "Y from (IS). The limiting values of.B and "Y in this iterative process give the
maximal capacity m and threshold zn.

We now compute the error probability {( m, n, Q) of the original HN (with the WTA
subnet) for arbitrary m, nand Q, and compare it with {.

Lemma 5.
For arbitrary n,Q and {, let m,.B,"Y,'1 and 6 be as calculated above. Then, the
probability of error {( ,n, n, Q) of the HN satisfies

1- e-lin 6 6' 1+1
{(m, n, Q) ~ r(1 - 6)-6};;~--(i-+'i5m{ (16)
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r( z) !..::!}'Y = exp{ -';00(1 -=-cr)ln ~ '7 (12)

(13)

(14)

(15)
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where

is the Gamma function.

Proof:

LP(Y
~

[(P(M < ZO»(~).O-.-l - (P(M < zo»)(~).o-.]

We now approximate this sum by the integral of the summand: let b = ~ and

C = DIn ~ . We have seen that the probability of incorrect performance of the
WTA subnet is equal to

P(Y $ M) ~

}: P(Y $ zo)e-c<zo-s>[(P(M < ZO»l{ l) - (P(M < zo»'<-o--)] ~

.
(1- '1)[: ('Y,_-1 - 'Y'-)e-crdy (19)

Now we transform variables t = bY In * to get the integral in the form

l co t dt 1~

(e-" - e-..)( ~ )~- = Kl (e-. - e-W)t-(1+K3)dt (20)
0 In:y tIn b 0

e""C(l - ,,)

This is the convergent difference between two divergent Gamma function integrals.
~e perform inteirat~on by parts to obtain a representation as an integr&;l wi~h t-K2
mstead of t-(l+ 2) m the mtegrand. For 0 ~ K2 < 1, the correspondmg mtegral
converges. The final result is then

1 - e-C c 1
(1- '1) r(l- - )(In -)r:t (21)

. c Inb '"1

Hence, we have

1 - e-lin y!.., 1
S M) ~ (1- ")--61;~--r(1- 6)(ln -.:y)6 ~

1 - e-lin ~ (£6)6r (1 - 6 )--61~~ -~-'6) T+i ~

P(Y

1~

P(Y ~ M) = LP(Y
z

~ z)[P(M < z + 1) - P(M

~P(Y
'I

(17)zt-le-Z'dzr(t) =

~ z)P(M = z) =

< z)] ~

~ zo)e-6(zoo-zo) In 6

(18)

(22)



Table 1: The performance of a HN and optimal THN: A comparison between cal-
culated and experimental results (0. = 0.7,n = 210).

as claimed. Expression (22) is presented as K(l, 6, 13)l, where K(l, 6, 13) is the factor
(~ 1) by which the probability of error l of the THN should be multiplied in order
to get the probability of error of the original HN with the WTA subnet. For small
6, K is close to I, however, as will be seen in the next section, K is typically larger.

4 Numerical results

The experimental results presented in table 1 testify to the accuracy of the HN and
THN calculations. Figure 1 presents the calculated error probabilities for various
values of input similarity Q and memory capacity m, as a function of the input size
n. As is evident, the performance of the THN is worse than that of the HN, but due
to the exponential growth of m, it requires only a minor increment in n to obtain
a THN that performs as well as the original HN.

To examine the sensitivity of the THN network to threshold variation, we have fixed
Q = 0.7, n = 210, m = 825, and let the threshold vary between 132 and 138. As we
can see in figure 2, the threshold 135 is indeed optimal, but the performance with
threshold values of 134 and 136 is practically identical. The magnitude of the two
error types varies considerably with the threshold value, but this variation has no
effect on the overall performance near the optimum. These two error probabilities
might as well be taken equal to each other.

Conclusion In this paper we analyzed in detail the performance of a Hamming
Net\vork and a Threshold Hamming Network. Given a desired storage capacity and
performance, we described how to compute the corresponding minimal network size
required. The THN drastically reduces the time and connectivity requirements of
Hamming Network classifiers.
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Figure 1: Probability of error as a function of network size: three networks are
depicted. displaying the performance at various valu~ of Q and m. For graphical
convenience, we have plotted log f versus R.
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Figure 2: Threshold sensitivity of the THN (Ct = 0.7, n = 210, m = 825).
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