
Slate of the Art:
An Evolving FPGA-Based Board for Handwritten-Digit Recognition

Ron Levy, Stefano Lepri, Eduardo Sanchez, Gilles Ritter, and Moshe Sipper
Logic Systems Laboratory, Swiss Federal Institute of Technology,

IN-Ecublens, CH-1015 Lausanne, Switzerland.
E-mail: {name.surname}@epfl.ch, Web: lslwww.epfl.ch.

Abstract

We describe a completely autonomous evolutionary
hardware system, which is able to recognize handwritten
decimal digits. The system can adapt itself to different users
on the fly. A working prototype has been implemented on
an FPGA using VHDL, following the positive results of a
C-based simulation.

1 Introduction

Since its inception, research in the field of evolvable
hardware has been in search of a “killer application”
involving online, real-world evolution [1]. For such an
application, the genetic operators (selection, crossover,
mutation) and the calculation of fitness must take place in
an autonomous way within the hardware, without recourse
to external elements (software or other hardware).

Autonomous robotics was quickly identified as a desirable
target field. Serious limitations, however were quickly
identified: the high cost of robots, which eliminates the
possibility of working with a truly large population, and the
unsuitability of robots for short learning time spans.

In this paper, we describe a new online evolutionary
hardware system capable of autonomously recognizing
characters. In this system, the entire genetic population is
physically stored in two memories and no software
simulation is used to perform the different genetic
operations. Due to the difficulties encountered
implementing a recognition system entirely in hardware, we
have limited ourselves to the recognition of decimal digits
as a first stage.

In Section 2 the problem of recognizing digits with the
chosen algorithm is discussed. In Section 3 the genetic
algorithm used for the evolution of the system and the

genome structure is described. The general architecture and
the required hardware needed for the implementation of the
system are presented in Section 4. The results obtained and
future developments are discussed in Section 5. (NB: the
project described herein is still work in progress)

2 Recognition of decimal digits

2.1 Introduction

The objective of the work described below is to obtain a
hardware system capable of recognizing hand-written
decimal digits, able to operate on its own, and capable of
evolving to improve its own performance. The hand-written
digits are inputted into the system through a touch screen
with a resolution of 16x16 pixels. The result obtained is one
of ten possible solutions.

Although limited to the ten decimal digits, the solution
search space is enormous: a combination of an input of 256
variables (the touch screen) and the ten output variables, the
solution matrix has 2^256 ≈ 10^77 lines.

There exist at present various solutions to the problem of
recognizing characters, including commercially available
products [2, 3, 4]. Nevertheless, to the best of our
knowledge, most of these are implemented in software.
Furthermore, several pre-processing phases are required on
the input character, in order to compensate for the
differences in size, pitch, and placement imposed by the
different users: the character is placed at the center of the
display, it is straightened up and its size is normalized. Due
to the problems such pre-processing would present if
performed by hardware alone, only the centering of the
character has been chosen for this project. Our constraints
render recognition of characters more difficult than what is
possible with currently available software.

0-7695-0762-X/00 $10.00 � 2000 IEEE

Draf
t

2.2 The recognition algorithm

On account of the choice of limited character pre-
processing as described in the previous section, an
algorithm that was not sensitive to pitch and size had to be
developed. After examining several possibilities, we chose
an algorithm based on the projected shadow of the character
on four axes. This solution yielded the best compromise
between hardware complexity and performance.

The principle utilized is fairly simple. It consists of
recognizing the character not by its 16x16 matrix but by a
combination of four vectors, each representing the shadow
as projected on a given axis (horizontal, vertical, or one of
two diagonals) (see Figure 1). Each of the 16x16 matrix
lines, be it horizontal, vertical, or diagonal, yields the
corresponding value of the shadow on the given axis, which
is the number of active pixels on that line. For a realistic
shadow, the weighted distance of the pixels to the axis
should usually be taken into account, but in order to
simplify the hardware, this weighting was not used. This did
not result in degradation of system performance.

The four vectors representing the unknown digit are then
compared to a set of reference vectors chosen for each of
the ten digits. The key to this project consists in choosing
these reference vectors through the use of a genetic
algorithm, which takes into account the quirks of the user’s
handwriting.

Figure 1: The projection of a digit on 4 axes, shown for
a 5x5 matrix.

3 The genetic algorithm

The genetic algorithm used, described in this section, is
essentially a simple genetic algorithm [5, 6].

3.1 The organization of the genome

The totality of all reference vectors can be thought of as a
genome, which evolves from a randomly generated
population.

The genome was divided into ten parts, or genes, one for
each decimal. Each gene is made up of four vectors, each
corresponding to one axis of projection. The size of the
vectors is not uniform: both the vertical and horizontal
vectors contain 16 values, one for each line of the 16x16
matrix, while the diagonal axis contain 31 values,
corresponding to all the diagonals of the matrix. Each value
can vary between 0 and 16, according to the number of
active pixels per line. Thus at least 5 bits are needed to
encode each value.

The size of the genome is thus:

10*(5*(2*16+2*31)) = 4700 bits

In order to simplify the hardware implementation of the
algorithm, the number of required bits was reduced by
making use of the following simplifications:

1. Elimination of 6 diagonals in each corner, which
results in having only 19 values per diagonal,
instead of the original 31. Performance is not
affected because of the centering of each inputted
character.

2. Limiting the maximum number of active pixels per
line to 7, which results in the reduction in the
coding of each value from 5 to 3 bits.

As a result the size of the genome is reduced to:

10*(3*(2*16+2*19)) = 2100 bits

Since 2100 is not a multiple of 32, a 2240 bit genome was
chosen which could easily be stored in and retrieved from a
32-bit wide memory.

3.2 Genetic operations

In order to shorten the time needed for character
recognition, the initial population is not completely random.
The first generation genomes are projection vectors
generated from a reference database, which are
subsequently used to establish a fitness criterion. This
reference database contains 10 samples per decimal digit,
representing a user’s handwriting.

0-7695-0762-X/00 $10.00 � 2000 IEEE

In order to create a next-generation population, a selection
procedure is applied. It requires several rounds, each
consists of randomly picking two genomes that are
subsequently compared according to their fitness. The one
with the best fitness will have the highest probability of
being selected. This selected genome will be crossed over
with the selected genome of the following round, thereby
giving birth to two more evolved genomes. This procedure
is repeated until a new population of genomes has been
created. A bit mutation can take place, with a very low
probability of occurrence (Pr{m} = 3.5e-4). The newly
evolved population replaces the old one and its degree of
fitness is again determined (see Figure 2). With each new
generation the best genome (with highest fitness) serves as a
reference vector for the character-recognition process.

The process of evolution continues indefinitely and occurs
in parallel with the character-recognition process.

Figure 2: The genetic algorithm.

3.3 The learning curve

The evolutionary process is dependent on the way the
fitness is determined. In the described system, the fitness is
a value between 0 and 200, 200 being the best possible
fitness.

In order to evaluate fitness, the genome is tested against
the reference database. An actual recognition takes place
using the genome to be evaluated, but instead of trying to
recognize an input digit, the reference characters are being
recognized. For each recognized character, the genome is
awarded 1 point. Since the reference database contains 10
samples of each decimal digit, a maximum of 100 points
can be obtained in this way. In order to eliminate
“hesitation” in the choice of recognition, an extra point is

awarded if the distance between the best two possible
choices for a given digit is large. Thus an extra 100 points
can be obtained, allowing a maximum obtainable fitness of
200. The algorithm used to calculate fitness is delineated in
Figure 3.

Because the evaluation of the fitness depends so heavily
on the reference database, it is possible to change the
database even when the system is running. This also enables
the system to adapt itself to the handwriting of a new user.

fitness(i) = 0, i = 0 :99 {initialize table of 100
characters containing the fitness for each genome}
for (each genome G = 0 :99) do

for (each referenceCharacter C = 0 :99) do
min1 = 224 {initialize smallest distance}
min2 = 224 {initialize second smallest distance}
for (each gene g = 0 :9) do

distance = referenceCharacter(C) – gene(g)
if (distance < min1) then

minTemp = min1
min1 = distance
recognisedCharacter = g
if (minTemp < min2) then

min2 = minTemp
end if

else
if (distance < min2) then

min2 = distance
end if

end if
end for
if (recognisedCharacter = C/10) then

fitness(G) = fitness(G) + 1
if ((min1 – min2) >= 10) then

fitness(G) = fitness(G) + 1
end if

end if
end for

end for

Figure 3: Pseudo-code of fitness computation.

crossover

selectionmutation

pop+fitnesspopulation

fitness

0-7695-0762-X/00 $10.00 � 2000 IEEE

4 Hardware implementation

4.1 Introduction

Figure 4: A population of genomes.

The total population consists of 100 genomes of 2240 bits
each (see Figure 4), and is stored in two memories, one for
the current population, the second for the newly evolved
one. In order to obtain online evolution, it is necessary to
design a processor that is capable of performing the above-
described genetic operations, producing the best genome

needed to recognize the input digit. In order to be
completely autonomous, the system also needs to perform
the following operations: data input through a touch screen,
projection and centering of the unknown digit, and digit
recognition. The use of an FPGA circuit greatly simplifies
the implementation of the required tasks. The only external
elements to the FPGA are three memories (one for the
reference database, two for the populations) and the touch
screen (see Figure 5).

Figure 5: Schema of the complete onboard system.

Projection

Recognition

Fitness
Genetic

Algorithm
Processor

(GAP)

InitGap

InitBase

Pop1
Sram

Pop2
Sram

Ref. Base
Sram

FPGA

Entered
number

4-vector digit

InternalMem

Recognized
number

Correction
button

Figure 6: The system architecture.

Centering

Correction

Touch
Screen

2 Population1

Ref. Base

Population2
FPGA

100
genomes

0

…

1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9One gene = 224 bits

0-7695-0762-X/00 $10.00 � 2000 IEEE

4.2 FPGA circuits

An FPGA, or field-programmable gate array [7], is an
array of logic cells placed in an infrastructure of
interconnections, which can be programmed at three
different levels: (1) the function of the logic cells, (2) the
interconnection between cells, and (3) the inputs and
outputs. All three levels are configured via a string of bits
that is loaded from an external source. FPGAs are highly
versatile devices that offer the user a wide range of design
choices.

For testing purposes, the system was implemented on a
RC1000-PP PCI bus plug-in card made by Embedded
Solutions Limited (www.embeddedsol.com). It has a fairly
powerful FPGA, type XCV1000 BG560 speed grade –4 of
the Virtex family made by Xilinx (www.xilinx.com). This
particular circuit can be configured with a system equivalent
to one million logic gates. There are also four memory
banks of 2 Mbytes each that can be accessed by both the
host PC and the FPGA.

4.3 General architecture of the system

For the time being, the host PC performs the input of the
character to be recognized and the character that is
recognized is displayed by the LEDs on the RC1000-PP
card. All other functions are performed directly by the
FPGA. Figures 6 and 7 present schematics of the global
architecture of the system.

The memories:

• The reference database is used to store 10
samples of each decimal digit. It uses one of the
on board 32-bit wide 2Mbyte SRAM memory
banks.

• The two population memories represent the
present (Pop1) and future population (Pop2);
each uses a 32-bit wide SRAM memory bank.

Inside the FPGA:

• The internal memory stores the genome used as
a reference for the unknown character to be
recognized. This 32-bit wide memory is
implemented using the dedicated blocks of on-
chip, true dual-read/write port synchronous RAM
with 4096 memory cells, which the Virtex FPGA
provides.

• The Init database module initializes the reference
database memory. The user has to manually enter
a decimal digit, which is then projected, centered
and stored in vector form in the database
memory. This is repeated 100 times in total.

• The Init GAP module works only once to
initialize the Pop2 memory so the GAP (Genetic
Algorithm Processor) can start the genetic
operations. This module randomly copies vectors
from the reference database to the Pop2 memory

Selection Crossover Mutation

Random generator

Start
Fitness

PipeStart
Selection

Pop1 Pop2

GAP

Figure 7: The Genetic Algorithm Processor.

0-7695-0762-X/00 $10.00 � 2000 IEEE

in order to create an initial population of 100
genomes.

• The fitness module calculates the fitness for each
genome stored in the Pop2 memory. This module
uses the algorithm described in Section 3.3 and
copies the genomes with their fitness from Pop2
to Pop1. Once these tasks are completed for one
generation, the fitness module replaces the
genome in the internal memory with a better one.
The module must thus communicate with four
different memories: the two population
memories, the reference database memory, and
the internal memory. The difference between the
reference vectors from the database memory and
the genes from the Pop2 memory is calculated 16
bits at a time using 16 xor gates and an adder.

• The GAP (Genetic Algorithm Processor) can be
further divided into the following modules (see
Figure 7):

- The 36-bit pseudo random number
generator generates a new random number
each clock cycle. This method eliminates
the need to request a new random number
when needed. The random numbers are used
at various stages in the genetic process.

- The selection module selects a genome
using the method described in Section 3.2.
It then reads the selected genome from the
Pop1 memory and transfers it to the
crossover module. It is connected to the
crossover module through a 32-bit wide
pipeline.

- The crossover module randomly chooses a
crossover point for the genomes. It waits for
the selection module to start sending the
first genome through the pipeline. It then
copies the genome to the Pop2 memory, up
until the crossover point. It subsequently
leaves enough space to copy the second
genome and continues copying the second
part of the first genome. Finally, when the
second genome is sent by the selection
module, it is copied to the free space
skipped when copying the first genome.
This process is repeated untill all of the
Pop2 memory is full.

- The mutation module randomly reads a 32-
bit chunk of a genome, stored in the Pop2

memory, of which one bit is then randomly
modified. The 32 bits are then written to the
read-address in order to complete the
mutation. This process is repeated 80 times
per generation.

• The projection module calculates the four
projection vectors for each input character. The
handwritten character is received line by line, 16
bits at a time. Each received line will increment 4
shift-registers. There are two 16 x 3-bit
incrementable shift-registers for the horizontal
and vertical projection vectors and two 31 x 3-bit
incrementable shift-registers for the diagonal
projection vectors. The projection module
accounts for the largest surface used by the
FPGA: the shift-registers require a total of 282
registers, 94 adders, and 188 muxes.

• The centering module centers the four projection
vectors. The centering is performed in parallel on
the four vectors to improve the response time of
the system. The centering is not done directly on
the inputted character, but rather on the
projection vectors, because of the greater ease of
implementation, while the result remains exactly
the same. The same shift-registers are employed
by the projection module. Shift-left and shift-
right operations are used to correctly center the
vectors. Once centered, there are as many zeros
on the left side of the vector as on the right side.

• The recognition module outputs the recognized
decimal digit. It calculates the difference
between the projected and centered character to
be recognized, and each of the 10 genes stored in
the internal memory. The gene that generated the
smallest difference yields the decimal value of
the input character. This value is then shown
using the LEDs. As in the fitness module, the
difference is calculated 16 bits at a time using 16
xor gates and an adder.

• The correction module is used to allow the
system to continue to evolve after the system has
been initialized. It enables the user to enter new
reference characters into the database, thus
replacing the older characters. In doing so, the
best fitness value is reset so that a new, better-
adapted genome will be stored in the internal
memory. Since each newly added character will
replace the oldest character of the same type,
there are ten registers that point to the oldest

0-7695-0762-X/00 $10.00 � 2000 IEEE

character in the reference database memory. This
creates a FIFO writing order for each digit.

5 Results and future developments

This project was written entirely in VHDL capable of
being synthesized. The code was simulated using ModelSim
by Mentor Graphics and was synthesized using Leonardo
Spectrum by Exemplar. Finally, the place-and-route were
performed using the Xilinx Alliance Design Manager.

In this system the following performance characteristics
were obtained: only 12,28 % of the FPGA is used and the
operating frequency is 30 Mhz. This translates into
approximately 12 new generations per second.

The entire project was first simulated in C, using the same
algorithms as the ones ultimately implemented on the
FPGA. This simulation demonstrated that the system is able
to correctly recognize 99% of the handwritten decimal
digits of a test database.

This is still work in progress. We are currently in the
process of developing a stand-alone board containing the
same FPGA, but that will also include a touch screen.

References

[1] “A new species of hardware”, M. Sipper and E. M. A.
Ronald, IEEE Spectrum, Vol. 37, No. 3, pp. 59-64, March 2000.

[2] “A novel parallel approach to character recognition and its
VLSI implementation”, H. D. Cheng and D. C. Cia, Pattern
Recognition, Vol. 29, No. 1, pp. 97-119, 1996.

[3] “Historical review of OCR research and development”, S.
Mori, C. Suen, K. Yamamoto, Proc. IEEE, Vol. 80, No. 7, pp.
1029-1058, July 1992.

[4] “Handwritten-digit recognition by neural networks with
single-layer training”, S. Knerr, L. Personnaz, G. Dreyfus, IEEE
Transactions on neural networks, Vol. 3, No. 6, Nov 1992.

[5] “The Simple Genetic Algorithm: Foundations and Theory”,
M. D. Vose, The MIT Press, 1999.

[6] “Genetic Programming”, W. Banzhaf, P. Nordin, R. E.
Keller, and F. D. Francone, Morgan Kaufmann Publishers, Inc.,
1998.

[7] “Field-Programmable Gate Array Technology”, edited by S.
M. Trimberger, Kluwer Academic Publishers, 1994.

0-7695-0762-X/00 $10.00 � 2000 IEEE

