ORDINARY HARDWARE DOES THE SAME OED JOB UNTH. IT WEARS OUT, WHEREAS EVOLVABLE HARDWARE ADAPTS ITSELF TO A CHANGING TASK

A new species of hardware

MOSHE SIPPER
Swiss Federal Institute
of Technology
EDMUND M. A. RONALD
Ecole Polytechnique, Center for Applied

Mathematics

AS YOU READ TH TESE I INLS, YOU ARI: USINC, A POWFRFLI sct of devices-including eyes, hands, and a brain-all of which share a fundanental characteristic: they are the products of the random mutations and genetic: mixing of Darwinian cvolution. As anthropologist Melvin Konner wrote not long ago: "Neuroanatomy in any species-but especially in a brain-ridden onc like ours--is the product of a sloppy, opporturistic, half-billion year |process of evolution] that has pasted together, and only partly integrated, disparate organs that evolved in different animals, in different eras, and for very different purposes" [sec 'io Probe lurther, p. 64].

This single sentence, which captures the basic workings of natural cvolution, also contains all the cualifiers (stoppy, opportunistic, pasted together, only partly integrated, and so forth) needed to describe "bad" engineering. And yel, between Man and Nature, Nature is the more ingeninus engineer of the two. The proof is right before your cyes. Part of the proof is, in fact, your cyes, as well as the other organs that make up your hody.

If natural evolution is so successful a designes, why wot simulate its workings in an engineering selting, by using a computer to cvolve solutions (o hard problems? Researchers pustuing this idea in the 1950 sand '60s gave birth to the domain of evolutionary computation. Foner decades later, the domain is flourshing, both in industry and academia, presenting what may well be a new approach to optimization and problem-solving.

Published in 1859, Clarles Darwin's On ibx Origin of Spreces by Mapms of Natural Selection shork the foundations of not only science but also socicly at large. Now, with new uses for the evolutionaly model coming into being, researchers and scientists are bequinning to create hardware that can grow and improve itself over time, evolvine steatily asil finds new and heter ways to do the tasks it has sel betore il. And the
results may have as much of an impact as Darwin's findings did.

THE ORIGIN OF A NEW SPECIES

Of course, Darwin's theory of random mutation under selective pressure bas in effect been utilized for much more than to years. Humankind has practiced evolutionary engine ering for thonsands of years, in the guise of plant breeding and ammad husbandry. The move from the natural world to the digital is but a small step further.

A computer can run the evolutionary process all by itself once soliware has been used to define the thing to be evolved and to create a pool of initial specimens. The sof ware evaluates the existing gencration of specimens in accordance with a userdefined fitness criterion, then breeds the next gelecration by combining and mutat-ing-in line with the laws of probabil-jiy-the fittest of the current candidates. This process of fituess-based reproduction is reiterated in the hope of finctinge a solution that meets the user's criteria of acceptability. [See "What is cvolutionary computing?" by Javid Fogel, JEEE Spectrm, lebruary, pp. 26-32.|

I:ssentadly, evolutionary computation is a software affiair, cansied nut as a simulation mordinary hardware such as a PC or workstation. Flowever, it is also possil) le to take: evolutionary algorithus similar to those
used by software and embed them directly into hardware. These devices, known as evolvable hardware, are the focus of a growing endeavor to brilk autonomous, adaplive, and fault-tolerant electronic systems, the present targets being, among oflers, computers, controllers for ruedical prostheses, and photogmphic printers, about which more will be said later.

The field was officially inatugurated only five years ago, when Fiduardo Sanchez and Marco Tomassini from the Swiss lederal Institule of Technology, in I ausame, orgatnized the first Conference on Fivolvable I Jardware in that city. In the preface to the conterence procecdings, entitled Tomarids
 mission: "The remarkable increase in computational power and, more recently, the appearance of a new generation of programmable logic devices have made it possible to put into actual use models of genectic encoding and artifictal coolution; this has led to the simulation and ultimately the hardware implementation of a new brand of machines.
"We have crossed a technological bamier, beynand which we no longer need content onnselves with traditional approaches to engineering design, rather, we can now evolve machines to attain the desired behavior:"

Sanchez and Tomassini went on to state boldly that "...we are witnessing the na-

Genetic Instructions

```
tranglator(N; ACTIVE NODE, NRW_NODEx INPUT,NODE);
trambiRtor(N; BASH; ACTIVE_NODE, PRZVIOUS, NODE);
ronistor_oast_to ps(4.618467日+04),
gapacitor_vant,ta_1mput(1,6284a3e-04),
trargdatior(A, NEW NODE, ACTIVE_NODE,, GROUND_NODE|,
resistor cast to pa(9.396477e+04),
trang15t\sigma¢(N, NEW,NODE, ACTIVE_NODE, GROUND NODE),
transistor( (P, NEW_NODE, ACTIVE_NODE, PS_NODE),
tranBistor(N, NEM_YODE, ACTIVE_mODE, PG,NODE);
trangistor(N, PG_NODK, ACTIVE NODE, NEW_NODE),
reajetor,moveto_output{10-06);
```


[1] This genetic code at top created the circuit below it. Conjuring up new circuits is merely a matter of mixing the code lines and generating new values for the circuit elements. As the code is relatively simple, the rules for reproduction and mutation can also be simple.
scence of a new era, in which the terms 'adaptation' and 'design' will no longer represent opposing concepes."

A VITAL DISTINCTION

linginects usingevolutionay computation depart from the classical design mote, and allow the computer to search automatically through the "space" of all possilale designs. But just how can evolution be used to make physical devices evolve-low is evolvable hardwate obtained? "The smple answer is: make some desired belavior of the device the goal of the evolutionary process.

To some, cuolvable hardware may seem merely the offspring of the marriage of comfuter haretware and evolutionary software. To the authors and their colleageses, however, it differs fundamentally from evolutionary computation. The definition of ceolvable hardware hinges on whether or not electronic circtits play a fundamental role in the evolutionary process, the hardwase is in the loon, so to speak, as opposed to the entie evolittionary process being rim as a software sim. telation. These circuits may be off the-shelf digital devices, such as feldi-progtammable sate arrays ($\mathrm{Fl} \mathrm{D}^{\prime}$ (As) [see "Self-improvement for ICS," P. 627, which until recently have been the main workhome of evolvalile hardware. Bet other types of commercially avaidable circuts, including analog, may be used, if they can be molded, or configued.

To clarify the difference from evolutionaty computation, consider some recent work using evolutionary lechnigues to design electronic, ciraits. Over the past tew years, a brand of evoletionary algorithms called genetic programming has been applied to the evolution of analos clectrical circuits by Stanford Lniversity prolessor John Koza, along with his collcagues lorrest Bennest III, David Andre, and Martin Keane. 'The resule has been a plethora of circuits for a diversity of func-tions-fillets, anmplifiers, and computational circuits (squaring, cubing, and toparithnic). to name a few.

Even more recently, a novel evolutionary algorithm was developed by two other researchersalso secking to cuolve analen circuts, Jason I ohn and Silvano Colombano from the NASA Ames Research Center, in Noffet l'ield, Calif. Their approad is simplee in some respects than the one ased by Koza and his colleagues LFig. l].

In all cases, the entire evolationary process was carrited out as a software simulalion, with fitness of the candidate designs calculated by means of the Spice circuit simulaior, the de freto standard for analog circuits. At no time did any lardware undergo an evolutionary change. Classified as evolutionary ciranit design, this work is a sulbelomain of cvolutionary computation, It is an important area of application that includes a multitude of hard problems and promises exciting results;

but even with constrection of the evolved circuit that emerges from the simulation, it is not evolvathle hardware

Ior an application to qualify as evolvable hardware, the presence of real electronio: circuits, mather than softwae simulation, is a must. This is not just a chauvinistic: attithede toward sotware on the part of hardware designers: using meal hardware fundanentally changes she evolutionary pro-cess-and its tesults.

For one thing, there is ne need to transfer the result of a simulation to hardware, whereas this step is a problem for several soltwate-hasest efforts. Designing a car, a toheot, or an electronic: circuit by simulation frequently presents unpleasian surprises when the device is buift. Sonerimes, these surppises are trifling; at other times, they can be gutite assty, preventing the designers from reaching their intended goal. I Ising the actual hardware-instead of a simulal-tion-during the evolutionary process makes the end result more predictable.

EVOLUTION, OFF- AND ON-LINE

To equality as evolvalale hardware, then, the design process must go beyond simulittion and use an electronic circuit. Thereate two ways of doing this: ofil-linc and on-line. With off-line evolval) le hardware, the circuis is mercly a reconligurable servant used for mensuring fieness, while the evolutionary alforithm rums on a master computer.
In a simple off-line application within the lich of evolutionary robotics, Adriats Thompcon, of the University of Sussex, Brighten, Eugland, evolved an omboaré controller for a solot |lig. 2]. The goal of

[2] Mr. Chips, the wheeled rohot [far left] developed by Adrian Thompson at the University of Sussex, provides the platform on which to check out circuits for navigating a smalk area without bumping into walls. The control circuit is evolved on an off-line system [near left] and downloaded into Mr. Chips, thereby enabling researchers to check the viability of a design in a real environment quickly.
the robol was to move absout on wheels within a rectangular arema 2.9 by 4.2 meters in size widhou bumping into walls. The setup consisted of a single rohot, used to test the specilication for each controller, referreal to using a biological analoyy as a gemone. (A genome is the denxyribonuclecic acide, on' 1)NA, of :ur organism, which ineluces the penes that determume its stacture and furs. (ioning.) The poppulation of candidate rolow controlters or genomes was kept ofi-line, stored as configuration descriptions on a standad workstation conmected to the mbor. lach litness evaluation involved downtoading the respective senome ont, the (singic) robot, allowing it to rum ahoul so that performance statistics could be col. fected, and then computing the fithess scorere in accordance with these statistics.
Menthile, and for seme years now, the cvolution of attificial neural networks
has almorhed f lugo de Cranis, until tecently part of the Advanced Telecommentications Rescarch Institutes I Luman loformation Proncessing Research I aboratories in Kyote, Japan (www.hip,atr.co.jp), and his colleaples. Their project, dubled brain building, involves a special-purpose slave machine: incouprotating hundreds of very lape-scale ICs , so that the master computer may quickly test the fitness of individual nemal networks |tijn. ${ }^{3}$ | "The chips ane field-configutable devicers.

Unlike off-line evolution, in which an external, supervisony computer carties out the evolutionary process, on-line ceolvable. hardwate enubeds be process in the target device. Thus the targed devise maintains the cvolving poppriation, evaluates the fituess of individerals, makes selections, and applies the: genelic op crators of crossover and melations. In 1996, an om-line evolvable device called
[3] The ideas of Hugo de Garis and his colleagues about implementing a cellular automata machine (CAM) have led to the construction of the CAM-Brain Machine (CBM) by start-up Genobyte Inc., of Roulder, Colo.
Up to 64000 modules can be placed in the CBM, resulting in billions of cells that can each be updated thousands of times a second, fast enough for realtime control of robots.

The aim of the project is to build a billion-neuron artificial brain by 2001.

Self-improvement for ICs

"We have crossed a technological barrier beyond whikh we no łonger need content ourselves with traditional approaches to engineering design..." wrote Eduardo Saf. chez and Marco Tomassini in the proceedings of the first ever Conference on Evolvable Hardware, held in Lausanne, Switzerland.

What technological barrier did they mean? hn part it was the need for a fundamental grasp of the theory and application of evolutionary computation-a need that had been met in the last few years. The other part was the lack of malkeable hardware, which had been overcome by progress in computer hardware, and especially in field-programmable gate afrays (FPGAs).

An FPGA is a large, fast integrated circuit that can be modified, or reconfigured, almost at any point by its enduser [see figure]. Physically, it consists of arrays of logic cells linked by an infrastructure of interconnects andeach using an array of transistors to realize some circuit function.

The device can be configured at any or all of three levels: the function of each logic cell, the interconnections between cells, and the cell inputs and outputs. All three levels are programmed with a string of bits that can
be loaded from an external source repeatedly; hence the tC is reconfigurable.

A basic distinction created by the novel technology is one between programmable and configurable circuits. A programmable circuit iterates ceaselessly through a threephase loop: an instruction is fetched from memory, decoded, and then passed to the execute phase. The process may call for several clock cycles, and is repeated for the next instruction, and the next, and so on.

A configurable circuit, on the other hand, can be regarded as having but a single, noniterative fetch phase. The so-called configuration string, fetched from memory, requires no interpretation and is used just as it is to set up the hardware for a given task. No further phases or iterations are needed. The abifity to control the hardware in such a direct manner gives the user access to a far wider range of functions, but at the price of a more arduous design task.

Within the domaln of configurable computing, two types of configuration strings can be distinguished: static and dynamic. A static string,

In a field-programmable gate array, the functionad lagic cells provide one independent level of programmability, the interconnections between the ceils provide another, and the input/output celis provide a third.
which adapts the circtit to perform a certain function, is loaded once at the outset, thereafter changing not at all during execution of its task. Static applications are mainly aimed at attaining the classical goal in computing: improved performance, be it in terms of speed, resource utilization, or area usage.

Conversely, a dyaamic configuration string is able to change during task execur tion. Dyfamic systems adapt to and keep on functionlng through variable circumstances, forming an exceilent substrate for implementing adaptive, evolvable systems.

The behavior of an FPGA circuit changes every time a novel configuration string is downloaded into the config-
uration register. In a typical engineering application, the circuit is designed to behave in a fixed manner, in accordance with preordained specifications, Borrowing biological terminology, we could say that we are given the phenotype desired-the mature organism-and asked to find its genotype-the underfying genetic specification.

Engineers usually solve the phenotype-to-genotype problem by resorting to various analytical and empirical tools that have accumulated over the years; logic design is full of them (ECAD, for example). With evolvable hardware, the phenotypic behavior is given and evolution is used to find the underlying genotype.
-M.S. \& E.M.A.R.
the tirefly machine was built by Moshe: Sipper and his colleagues from the Swiss Federal Institute of [echnology, Lausanme, Swilzerland [1'ig. 4]. They designed the circtit board to improve the way it performed a symelaronized-oscillation task-similar to the way a swarm of firetlics will attempt to pulse their lights on and off in unison. It was an early prool of concept of the idea of online evolvable hardware.

More practically, several on-line chips for specific applications have been designed and fabricated hy Tessoma I liguchi and his colleagues at the Evolvable Systems laborarory of the filectrotecluical faboratory in 'Isukuba, Japan. They Ireve built both digital and analog circhits aimed at commercial devices: an analog chip for cellular phones, a clock-timing architecture for gigahertz systems, a neural-feetwork chip capa-
bie of autonomous reconfiguration, and a data-compression chip for electrophotographic printers.

Higuchi and his colleagues have also built a general-purpose chip for on-line evolvable bardware and used it to implement a controller for an artificial hand controlled by electric pulses from the aerves in the arm muscles 「Fig. 5 . In normal conditions, a disaluled person trains for over a month before being able to manipulate a prosthetic hand with case. Reversing this sconario, Higuchi and his colleagues had the artificial hand adapt itself to the disabled person, instead of having the person adapt to the hand. The idea was that the on line controlter should accept signals from the nerves in the arm and map them to desired hand actions. Becanse those signals vary greatly between individuals, it is impossible

Lo desigu such a cirectit in advance. But with the evolvalble-hardware comboller, the hand usually requires less than 10 minutes to adapt to its owner through on- line training, in which the person rejeats various hand movements-a notahle improvement over the one month repuited when the owner is the one doing the adapting.

Offline and on-line cuolvable hardwate each offer distinct advantages. The off-line approach allows the engineer to use all the computing power available in his labomatory and to employ sophisticated evolutionary algorithms to tackle the design problem at land, while keeping actual hardwate in the loop. The ou-line appronch holds out the possibility of setung loose an evolving device in jts target enviromment, where it will adapt to perform its intended fowtion. For instance, the hand-controfler chip has
to be placed in a lightweight prosthetic Gand. Similiarly, in an on-Sine mboticapplication (as opposed to the off-line one described above), the yoal is to send the cumbersome workstation packing and let the mot roans about with an evolvable chip? in what passes for its belly.

Some form of on-line adaptation is, in fact the only possibility where dynamic enviroments are concerned: a robot sent to explore the surface of Jupiter cannot be preprogrammed entirely in advance, and will therefore have to adapo on-lites.

FINDING THE UNKNOWN

Up to this point, the "bard" engineering alspects of evolvalbe hardware have been the focus, namely, applications within the exist. ing "species" of analog and digital devices. Now the question is whecher it is possible to generate new species, entisely novel designs, whose underlying structure and fonctionality are more than evolutionarythey are tevolutionary.

Lheonventional electronic: design through arlificial (as opposed to matural) evolution has been explored at the L. Lniversity of Sussex in Brighton, where Adrian Thompson, Paul Layzell, and Ricardn \%cbulune evolved a number of a priori digital circuits, including the aforementioned robot controller and a tone discriminator:

In these cases, evolution was unfettered by standard digital concerns. No spatial-structure constrainsts Sarch as lituiting the anmber of rectremen conacetions) were placed on the evolving configurable device, an H'CA. Non were there any impositions on modularity (such as insisting that two funcionis need be co-tesident on the same madwle) nor any dynamical constraints (such as dre insistence on having a synchronizing clock or handshaking between modules). I'he evolved circuits resembled nothing that an engincer would design. Thompson, Layzell, and \%obolum conctuded: "What initially seemed daring hypotheses are now either mater-ol- fact, or within reach. From the vastness of desigu space, practically uscful novel regions beckon."
E:lsewhere in Britain, an attempt was made to find not just novel circuils but novel circuit types. Julian Miller at the Uhinversity of Pirmingham and Peter Thomson of Napier Ulaiversity in Edinburgh are evolving arithmetic circlites, such as 2-and 3bit hinary multipliers using evo-
lutionary circuil design. "Arithuetic circatits are interesting...., they wrote in the paper they presented at the Second Intermational Conlerence on Evolvable Systems in 1998 , "since there are well known conventional designs with which the evolved solutions. can be compared."

But why should anyone wish to evolve such thoremghly well-known types of circuits? Well, one new circuin design is alf it takes: finding a trudy novel 2 -lit multiplier (faster, sunaller, more energy efficient) or some novel design principle could mean riches beyond imagination- Jiteratly. The evohutionary desigin system devised by Jolun R. Koza, Forrest H. Bennett III, David Andre, and Martin A Keanc Lsee Tol'robe Further, p. 64] has rediscovered a number of previonsly patented-and thus immonative according to the rules of patent law. circuits, and they are continuing their search, for as yel umpatented inventions.

These works are sonewhat controvessial, and engineers rifen eye them with suspicon. One maior issue has to do with robustness: the cituits evelved by Thompsom and his colleagaes, for example, often exploit
haphazarel analog characteristics (such as slight, unintentional differences in resistance beween two devices that could be used as an sd bac means (s adjust surrent) during evolution. This renders it impossible to tanaster the evolved designs wo other chips of the same type (Ne Sussex group has recently enhanced its paratigm io address the robustness issue.) Nonctheless, this novel use of simulated evolution may lead one day to the evoluitu of noveliy: new dectronic species.

Over the past lew years, agrowing number of computinu scientists and engineers have been turning to nature, seeking inspiration in its workings in order to aumenent the abilities of Llecir artificial systems So far, this anticle has only considered one biologrical source of isteas: evolution.

There are in fact thee prime sobuces of biological inspiration-evolution (or phylogeny, to use the Cricek-derived term lavored by biologisis), devclopment (ontogeny), and learning (epigenesis). livolvalle hardware thus inhahits one realm of this bronder bielengical terrain, dubbed the P(): model. L.ike evolution, learning hard-

[5] Researchers at the Electrotechnical Laboratory in Tsuktha, Japan, used evolvable hardware to develop a prototype artificial hand that adapts to a patient's unique arm-muscle activity. Typically, the adaptation is the other way round: people control the hand by learning to modify their muscle activity.
wate is another husy area of research and applicalion. Todday, it mainly involves hardware implementation of arlificial neural netwarks, about which much has been written.

GROWTH OPPORTUNITIES

The thirel source of inspiration, onuegeny. is the one least studied to date by engineers. Ontogeny is the process by which multicellular organisms develop, through, the successive divisions of a ierilized mother cell, known as the zygote.

Drawing inspiration from this fundamental natural process, a Swiss gromp has been developing the embryonies project. Among their number are Daniel Mange from the Swiss liederal Institute of lechnology, I.ausanne, and l'iere Marchal firm the Centre Suisse dy: iectronique et de Microtechniture in Nenclatel.

Itmbryonics, for embryonic electronics, ams ar developing very lange-scale IC.s, capable of self-repair and self-replication. These two properties of natural onganisms are attained in hardware by implementing in ICs certain features of natural ontogeny.

The ability to self-repair emables an electronice "onganism" to recover from minor fauls, while the ability to selfereplicate allows sach an organism to recover from a major farlt, by creating a novel, faultless cleme. The Swiss group has buill a mumber of prototypes to date, one of which is the BitoWatch - a self-repairing watch Fige. 6].

Be it evolution, learning, develepment, self-repair, self-replication or any other

biological process, the tendency is clear: biological inspiration in enginecring is on the rise; mashines are becoming more adaptive. Many ojen issues and rescarch avenucs awail exploration, yet it seems safe to predicl a future rife with adaptive, bio-inspired hardware. The applications of such systems are bomeded only by human imagimation.

Which is, of course, unlimited.

TO PROBE FURTHER

The HEEE Transactions on Evolutionary Computation and the newly created journat Genetic Programming and Evolvable Machines (Kiuwer Academic: Publishers, Norweil, Mass.) are fundamental sources of work on evolvable hardware. A perspective on the differences botween evolvable hardware and evolutionary computing appeared in the April 199% issue of the Transactions: "A phylogenetic, ontogenetic, and epigenetic view of bioinspired trardware systems," by Moshe Sipper, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andrés Pérez-Uribe, and André Stauffer (Vol. 1, no. 1, pp. 83-97).

The special Transactions issue of September 1999 (Vol. 3, no. 3) was entitled "From Biology to Hardware and Back." Edited by Moshe Sipper and Daniel Mange, it contained such articles as "Real-world applications of analog and diegital evolvable hardware" by Tetsuya Higuchi, et at. (pp. 220-35), and "Explorations in design space: Unconventional electronics design through artificial evolution," by Adrian Thompson, Paul Layzell, and Ricardo S. Zebulum (pp. 167-96) and in "A circuit representation terhnique for automated circuit design" by Jason D. Lohn and Silvano P. Colombano (pp. 205-19).

The evolution of electrical circuits by genetic programming is described in Genetic Programming IIt: Dorwinian invention and Prob-
fem Solving by John R. Koza, forrest H. Bennett Ill, David Andre, and Marlin A. Keane (Morgan Kaufmann، San Francisco, 1999).

Evolution of Paralfet Collular Machines: The Cellutar Programming Approach by Moshe Sipper (1997) is considered a basic text in this field. So, too, is Towards Evolvable Hardware, edited by Eduardo Sanchez and Marco Tomassini (1996). Both books are published by Springer Verlag, Heidelberg, Germany, as are the proceedings of the biennial International Coriference on Evolvable System.

For more information on the use of FPGAs in evolvable hardware, see "Static and dynamic. conrigurdile systems" by Eduardo Sanchez. Moshe Sipper, Jacques-Olivier Haenni, JeanLuc Bouchat, Andró Stauffer, and Andrés Pérez-Uribe, published in the IEEE Tramsactions on Computers, Vol. 48 , no. 6, pp. 1556 64.

As for the introductory questation, it was taken from an article by anthropologist Melvin Konner, "A piece of your mind," in Science, July 1998, Vol. 281, pp. 653-51.

ABOUT THE AUTHORS

Moshe Sipper is a senior researcher at the Swiss Federal Institute of Technology in Lausanne, switzerland. His chiel interests involve the application of biological principles to artificial systems, including ovolutionary computation, cellular computing, bio-inspired systerns, evolvable hardware, complex adaptive systems, artificial life, and neural networks.

Edmund Ronald is an affiliate researcher at the Center for Applied Mathematics of the Ecole Polytechnique, in Paris, and a visiting researcher at the Swiss Federal Institute of Technology in Lausanne. His interests include experimenting with collective robotics and the philosophical underpirnings of artificial life.

Spectrum editor: Richard Comerford

