
Speeding-up Digital Ecologies Evolution
Using a Hardware Emulator:

Preliminary Results

Pierre Marchal 1, Pascal Nussbaum 1, Christ ian Piguet 1
Moshe Sipper 2

1 CSEM Centre Suisse d'Electronique et de Microtechnique SA, Neuchs
Laboratoire de Syst~mes Logiques, Swiss Federal Institute of Technology, Lausanne

"The creatures cruise silently, skimming the surface of their world with the
elegance d i c e skaters. They move at varying speeds, some with the variegated
cadence of vacillation, others with what surely must be firm purpose."

Steven Levy - Artificial Life - The Quest for a New Creation

A b s t r a c t . For a more than a decade, the idea of applying the biological
principle of natural evolution to artificial systems in order to create or to
improve digital ecologies has emerged from different laboratories. During
the past couple of years, a new trend consists in applying these investiga-
tions to hardware design. This concept is called "Evolvable Hardware".
For this quest, hardware emulation offers an alternative approach to the
development of a generic evolvable system including fitness evaluation.
Compared to a software solution, emulation can be on the order of a
million times faster which is of higher interest when billion steps of evo-
lution are necessary. A further advantage of emulation is to provide the
description of the VLSI to be implemented as well as a validation of its
behavior.
In this paper, we describe the way followed to implement the system
(cellular automata and the surrounding evolutionary control logic) as a
hardware description in an emulator. For different examples presented
in this paper, reasonable with respect to simulation, processing time
of hardware emulation versus software simulation are compared. The
time saved by hardware emulation has given the opportunity to increase
the complexity of the "evolving organism" by including the selection of
intervening neighbors in the parameter selected by evolution.

1 I n t r o d u c t i o n

Recent advances in the field of Compu te r Engineering (circuit synthesis, pro-
g rammable devices and artificial ecologies) as well as in Molecular Biology (em-
bryology, genetics and immune systems) combined with a bet ter unders tanding
of dynamical systems have paved the way of re-breathing life into the old dream
of construct ing biological-like machines. This theme, first raised a lmost fifty
years ago by one of the founding father of cybernetics, John von Neumann, is

Draf
t

108

based on the concepts of self-reproduction and self-repair (von Neumann 1966).
Unfortunately, the technologies available at the time as well as the "molecular
level" he had addressed (Marchal 1994) was far removed from that necessary
to implement his idea. The remarkable increase in computional power and more
recently, the appearance of a new generation of programmable logic devices, i.e.,
Field Programmable Gate Arrays (Brown 1992, Moore 1991, Moore 1994), have
made it possible to couple genetic encoding and artificial evolution. We have
hence reached and crossed a technological barrier, beyond which we no longer
need to content ourselves with traditional approaches to engineering design, we
rather can now evolve machines to attain the desired behavior (Sanchez 1996).

Our main focus, in this paper, is to increase the speed of "digital ecologies"
evolution. As a consequence, the saved time has been used to increase the com-
plexity of the "evolving organism", so the selection of intervening neighbors has
been added as a new possible parameter in the evolution process. Hence, the
evolution process acts on the transition table and on the neighborhood as well.
Preliminary results shown in this paper address the evolution of non-uniform cel-
lular automata (CA) to perform computational algorithms, an approach referred
to as cellular programming (Sipper 1994). Section 2 reviews the investigations
performed on digital ecologies evolution. Section 3 briefly describes the advan-
tages offered by the hardware emulation versus software simulation. Section 4
presents the necessary steps to implement hardware evolution on the emulator.
Section 5 describes preliminary results before concluding remarks of section 6.

2 Evolving Digital Ecologies

Is it possible to actually evolve a real creature? To start with some inert lump
of information and, compressing billions of years of activity into something a bit
more manageable (a night~ a week, even a year) to wind up with life? Can one
indeed follow the path apparently taken on earth, so that something as simple
as a bacterium could make its way up the evolutionary ladder into something as
complex as a multicellular organism? These are some of the questions that lead
research investigations on evolving digital ecologies.

For more than a decade, the idea of applying the biological principle of natu-
ral evolution to artificial systems in order to create or to improve digital ecologies
has emerged from different laboratories. Three schools of thought may be distin-
guished. The very first one, related to the evolution of one individual, is led by
Stuart Kauffman (Kauffman 1993, Kauffman 1995). This research was first ori-
ented towards the emergence of life on earth. Kauffman's approach is driven by
the occurrence of self-organization, i.e., the spontaneous emergence of order: a
type of energy-sink in which an ergodic dynamical system will fall after a certain
transient period. For instance, if oil-droplets in water manage to be spherical, or
if snowflakes assume their evanescent sixfold symmetry: physiochemical reasons
must be invoked, none of these effects have anything to do with natural selection.
This research led him to consider that complex systems, poised on the bound-
ary between order and chaos, are the ones best fit to adapt by mutat ion and

109

selection. Such systems appear not only to be able to coordinate complex and
flexible behavior but also to respond to changes in their environment. Kauffman
pointed out that promising indications that linked coevolving complex systems
are led by selection to form ecosystems whose members mutually attain the edge
of chaos.

The second school of thought, related to the evolution of the species, is led
by Thomas Ray (Ray 1992, Thearling 1994). Ray models his system on a later
stage in life's development, the explosion of biological diversity that signaled the
onset of the Cambrian Era, roughly six hundred million years ago. From a rela-
tive paucity of phyla, the earth teemed with unprecedented new life forms. Ray
has developed an ecological system, called Tierra, in which computer programs
(digital ecologies) compete for survival in a "physical" environment consisting
of the energy resource (CPU time) and the memory space. The implicit fitness
function favors the evolution of creatures which are able to replicate with less
CPU time. However, must of the evolution consists of creatures discovering ways
to exploit one another.

The third school of thought lies somewhere in between the previous ones; it
comes after the appearance of life on earth, but long before the Cambrian Era.
It nearly corresponds to the emergence of multicellular organisms by gathering
single cells into a colony, something starting with the symbiosis phenomenon.
The activists in this field include M. Mitchell, (Mitchell 1993, 1994, 1996), J.P.
Crutchfield (Crutchfield 1995) working on uniform one-dimensional CAs, and
M. Sipper (Sipper 1994, 1995, 1996a) working on non-uniform (heterogeneous)
CAs. In order to realize computational tasks of the same complexity, an homo~
geneous environment implies a larger neighborhood. So heterogeneity enables to
decrease the size of the neighborhood and hence to decrease the amount of both
computation time and memory space.

2.1 Evolvable Hardware

During the past years, a new trend consists in applying these investigations to
hardware design. This concept is called "Evolvable Hardware" (Hemmi 1994,
ttiguchi 1995). Evolution may be realized on-line or off-line. In the on-line hard-
ware evolution, each individual is an autonomous physical entity, ideally capable
of modifying itself; this occurs as a result of directly sensing feedback signals
communicated by a suitable physical environment and possibly by other mem-
bers of a population of similar entities. In the off-line case, evolution design is
carried out as a software simulation, with the resulting satisfactory solution (de-
sign) used to configure the programmable hardware. To date, on-line evolution
presents practical difficulties and the genetic operations (selection, mutation,
re-combination) as well as fitness evaluation are usually performed off-line in
software. This paper, together with its companion paper (Sipper 1996b) present
two different ways of implementing truly on-line evolution.

110

2.2 A S I C des ign p h a s e

During the design phase of an Application Specific Integrated Circuits (ASIC),
after the schematics have been created and captured with an appropriate CAD-
tool, some functional verifications are necessary to ensure that the circuit cor-
rectly implements the given specs. Most often, this verification phase is purely
virtual since it takes the form of simulation. Behavioral models of gates, flip-flops
and all the other primitive components of the design, along with the netlist de-
scribing their interconnections, are analyzed and checked by the circuit simulator
program. Special files describing the input stimuli as well as awaited responses
are introduced so the simulator is able to check circuit dynamics and report
(graphically) behavioral discrepancies as a function of time.

2.3 I m p r o v i n g s i m u l a t i o n b y us ing e m u l a t i o n

Hardware emulation offers an alternative approach to function verification that
can be on the order of a million times faster than simulation, which is of higher
interest when billion steps of evolution are necessary. A hardware emulator con-
tains a large pool of programmable devices. General purpose logic functions can
be configured and interconnected to exactly match the functional behavior of
a given design. Since hardware emulation is by essence a hardware implemen-
tation of the design, each and every part runs concurrently, hence leading to a
solution much faster than simulation. Although an emulator does not provide a
gate-to-gate implementation of the design (it produces a logical equivalent im-
plementation), it provides a more important advantage: the description of the
VLSI to be implemented as well as a validation of its behavior.

3 H a r d w a r e E m u l a t o r

The Meta-Systems Simexpress is a new original digital emulation solution, for
which full custom circuits (called Meta) have been designed to optimize the
mapping and routing of the netlists to be emulated. The emulator acts like a
giant FPGA on which the circuit, to be tested and debugged, can be mapped.

3.1 E m u l a t o r d e s c r i p t i o n

The emulator is based on a building bloc called BLP (French acronym for Pro-
grammable Logic Block), which resembles some FPGA solutions but has been
optimized for emulation. It contains a 16-bit LUT which allows 4-input 1-output
logic functions to be configured. Each Meta-chip contains 128 BLPs, with the
necessary control and interconnect logic. The boards of the emulator (logic cards)
contain 24 times the trio composed of one Meta-chip, one 32k 8-bit static RAM
and one 1Mbit VRAM. The static RAMs provide possibilities to map memo-
ries described in the netlist. The VRAMs sample all the internal nodes for logic
analysis of the netlist. A logic card allows the mapping of around 20kgates. The

111

emulator itself is composed of 1 to 6 racks. Each rack contains up to 23 logic
cards. Various other cards are provided in addition, like I /O cards (enabling
external connections for on-board emulation), memory cards (emulation of huge
memories of up to 64Mbytes/card), and prototype cards used when special logic
has to be inserted into the emulator. The version used at CSEM is a 2 racks
emulator equipped with 31 logic-cards plus one 336-p I /O board. This gives a
total amount of nearly 600 kgates.

3.2 C o m p i l a t i o n

The emulator must be configured like a huge FPGA. The global configuration of
the emulator is created by compilation of an ANF netlist (ANF netlist language
allows designers to describe hierarchical designs). The netlist relies on four ob-
jects (models, instances of models, signals and connectors). In our experiments
we have exclusively made use of the primitives provided with the machine: Meta-
lib (Meta-lib is a library of logic gates and logic blocks for which a direct mapping
on the Meta-chip is provided) or Meta-memories (Meta-memories enable the user
to make use of memories available on each board). The compilation tool, called
XMCI, handles the ANF netlist, analyzes it, re-synthesizes and optimizes it in
different ways according to the user's need. Optimizations are of 2 types: area
and delay. Three levels of optimization are available for each of them. Finally,
XMCI computes the maximum emulation frequency of the design. This feature
is possible because inter-gate delays are fixed: between 2 gates internal to a chip,
between 2 gates belonging to different chips on the same board, between 2 gates
belonging to different chips on the same rack and between 2 gates belonging to
2 different racks. So knowing the size of the design and how it is downloaded on
the machine, makes it is possible to compute the maximum emulation frequency.

3.3 E m u l a t i o n

Emulation is performed using the MetaSystem Emulation Language (MEL) tool,
which loads the emulator with the configuration file, and allows to run control,
to perform logic analysis, to fine tune triggering features, and to create the
necessary files needed for patterns verification. MEL can be driven by procedures
written in a C-like code, for complex control with repetitive operations. All
the signals or vectors (busses) to be probed can be displayed in a waveform.
Input control can be done through monitors, where any vector or signal can be
displayed and modified. To fill-up these two forms, a navigator gives hierarchical
access to any node or instance of the netlist. Each node can be sampled, without
recompilation. As a consequence of optimization, some nodes may automatically
be removed by XMCI. To avoid this, a Meta device, called Meta Visibility, is
added in the netlist. It can be connected in the original schematic to force the
node to appear in the final netlist. Debugging the system must be done at a
maximum 1 MtIz frequency, due to the limitations of the VRAMs handling the
probing during digital analysis. Indeed, standard 1 Mbit VRAM serial pipes

112

work at 32 MHz on 4 channels (128 Mbit/s). Hence, the maximum speed to
sample 128 BLPs outputs is 1 MHz.

4 First Experiments

In a first investigation phase, we have addressed the co-evolution of a cellular
automaton to perform computations and apply it to different computational
tasks: density, synchronization and sorting. The goal is to let the global function
emerge from local interactions. Evolution consists of modifying the transition
function of each automaton according to the local fitness - adequacy of each
cell with respect to the awaited response. Simulating this kind of automata can
be considered a complex task, since the number of necessary evolution cycles
is too huge for a reasonable amount of time. All explanations concerning the
simulation of these tasks may be found in the companion paper (Sipper 1996b).

4.1 D y n a m i c s a n d e v o l u t i o n

The first step in this domain has been to apply genetic algorithms to a uni-
dimensional, 256 cells, 4-state cellular automata. The initial state is loaded at
the beginning as an input pattern (Cf. Fig. 1).

r
INITIAL

CONFIGURATION]

%
=300 <300

LOCAL FITNESS
EVALUATION]

&
~s~ < 256

= 256

NOT OK

I TRANSITION RULES
MODIFICATION [

I
Fig. 1. Block scheme of the dynamic process

113

We then let the system go through its dynamics for a period at least as long
as the network's size. This is the mean t ime necessary to leave the transients
due to the circular bordering conditions we have chosen. So after 300 iterations,
the pat tern has changed, depending on the initial value of the cell and on the
transition rule of each cell (randomly choosen at start) . This "final state 1'' is
considered as the result of the function performed by the CA network. The final
state of each cell is compared with the expected result. If they are equal, the
fitness value of the cell is incremented, else the value remains untouched. This
experiment is repeated for 256 times (over 8k possible initial configurations),
providing each cell with a different fitness value. The evaluation of hundreds
of initial configurations, guarantees not to be stuck in some local minirrmm
corresponding to a precise initial seed and given transition rules. After these
experiments, we can be confident in the value shown by the fitness evaluator
located in each cell. Here takes place the evolution by production of a new
transition rule. The genetic algorithm changes the transition rule of each cell
according to this definition:

1. If the fitness of the current cell is higher or equal to the fitness of its two
neighbours, then the transition rule remains the same.

2. If one and only one cell has a better fitness value, then its transition rule is
completely copied into the current cell transition rule.

3. If the two neighbours have a bet ter fitness value, then their rules are copied
randomly from one or the other into the cell (this operation is called cross-
over).

It is clear that simulation of such kind of system requires huge amounts of
computat ion time: thousands of iteration steps for hundreds of au toma ta running
concurrently. This is the major reason why emulation has been chosen instead
of simulation to perform the evaluation. After these first computat ional tasks
(leading to fixed-point at tractors for which two successive states are sufficient),
we have addressed a counting task, for which the first neighborhood was no
longer sufficient, and for which we were able to choose the length (greater than
2) of the cyclic attractor.

4.2 S y s t e m d e s c r i p t i o n

Figure 2 shows the main constituent of the system. It consists of:

1. The sequencer, called EVOLVER, responsible of both dynamics and evolution.
It includes the INITIALIZATION control block, the DYNAMICS control block,
the FITNESS control block, the EVOLUTION control block.

2. The SEEDS memory. It stores a set of possible seeds for the evolution. This
strategy enable to repeat the same experimentat ion more than once.

1 Note that this final state, should be stable for a convenient period of time. Convenient
means that, depending on the complexity of the awaited result, it can be 2 iterations
for fixed-point attractor or a complete cycle plus one iteration for a cyclic attractor.

114

3. The awaited response memory, called RESULTS. For each seed stored in the
seed memory, this memory provides the corresponding results.

4. The noise memory, called RANDOM. It is used to store random patterns
used for the genetic operation of cross-over 2. This strategy enables to repeat
experiment with the same random numbers.

5. The array of cells. It contains 256 instantiations of the cell schematic (Fig. 3).

~1 INITIALIZATION ,,~--
" .~l D'ctq~ItCS 'l

FITNESS

1 EVOLUTION ~
i

II.I

. [I 256 CELLS

- l !

_ I 5r I PERFO~I
DYNAMICS

,i.,. ' i .
j LOcALFrrt~ss [

3 E': iA 0N l
I TIIaNSfflON Rtm~]

~- MODIFICATION]
I

Fig. 2. Top-level schematic of the system

Figure 3 depicts the block scheme of one element of the cell array. Each cell
computes its new state (ST+l) by using its current state (ST) and the one of the
nearest neighbors (left and right), to address a look-up table (LUT). This LUT
provides the next state of the considered cell. The set of values stored in this
LUT, that define the dynamics of the automata, is called TRANSITION RULES.
Means are provided to check if the final state and the AWAITED RESULTS are
identical. In this case, the FITNESS COUNTER is incremented. The values of the
FITNESS COUNTER is then used to modify the TRANSITION RULES.

4.3 C o m p i l a t i o n t i m e a n d s p e e d

In our case, the compilation gave a result file filling between 20 and 24 logic
cards (all kinds and levels of optimization scanned). The emulation frequencies
were between 1Mttz and 1.8Mhz. The only problem, coming from the hundreds
of memory used, was the inability to route connections for some versions of the
schematic. In fact, the memory address bus had to be propagated through all the
256 cells, consuming a lot of interconnection resources. A wide range of options
allows to fine control parameters for compilation. We reduced the filling factor,

2 The mutation has not been implemented in this very first experiments. Hence, it
may be possible to get stuck in a local minimum

115

AWAkeD S / \

~ h- . -_- CRoss-OveR

Fig. 3. Cell's schematic

which determines the level of compaction of parts into a Meta-chip. This oper-
ation gave improvements. A problem that remains is that a network of iterative
cells quickly requires extensive interconnection resources, due to the necessity
of having global nets. This necessity of having global nets was a consequence of
our choice to be able to repeat the same experiments with same initial values
and same random numbers. A solution, using LFSRs (Linear Feedback Shift
Registers), could easily overcome this problem. The compilation time oscillated
between 30 and 40 minutes.

4.4 C o u n t i n g / M a c r o - a u t o m a t o n

As mentioned previously, all results concerning the tasks of density, sorting and
corresponding discussions may be found in the companion paper (Sipper 1996b).
We just briefly report the result of the synchronization task as a starting point
to our investigations.

Figure 4 demonstrates the operation of a co-evolved, non-uniform, r = 1 CA.
White squares represent cells in state 0, black squares represent cells in state 1.
The pattern of configurations is shown through time (which increases down the
page). Note that upon presentation of a random initial configuration the grid
converges to an oscillating pattern, alternating between an all-0 configuration
and an all-1 one; this period-2 cycle may be considered a 1-bit counter. Building
upon this evolved CA, 2- and 3-bit counters can be constructed, as demonstrated
in Fig. 5 and 6.

Figure 5 depicts the operation of a one-dimensional synchronization task: a 2-
bit counter. The resulting non-uniform CA converges into a period-4 cycle upon

116

Fig. 4. The one-dimensional synchronization task: 1-bit counter

presenta t ion of a r a n d o m initial configuration. Due to m e m o r y requiremeents
problems, the software solution is based on a non-uni form, 2-s tate CA, with
connect ivi ty radius r = 2, derived f rom the co-evolved, r = 1 CA, while the
hardware imp lemen ta t ion directly uses 4-s tate CA, with connect ivi ty radius r =
1. The software imp lemen ta t ion is achieved by "interlacing" two r = 1 CAs, in
the following manner : Each cell in the r = 1 CA is t r ans fo rmed into an r = 2 cell,
two duplicates of which are placed next to each other (the result ing gr id 's size is
thus doubled). This t r ans fo rma t ion is carried out by "blowing up" the r = 1 rule
table into an r = 2 one, creating f rom each of the (eight) r = 1 table entries four
r = 2 table entries, result ing in the 32-bit r = 2 rule table. For example , entry
110 --+ 1 specifies a next -s ta te bit of 1 for an r = 1 ne ighborhood of 110 (left
cell is in s ta te 1, central cell is in s ta te 1, right cell is in s ta te 0). Trans forming
it into an r = 2 table entry is carried out by "moving" the adjacent , distance-1
cells to a distance of 2, i.e., 110 ~ 1 becomes 1X1Y0 ---, 1; filling in the four
pe rmuta t ions of (X, Y), i.e., (X, Y) = (0, 0), (0, 1), (1, 0), (1, 1), results in the
four r = 2 table entries. The clock of the odd numbered cells funct ions twice as
fast as tha t of the even-numbered cells; this means t ha t the la t ter upda te their
s ta tes every second t ime step with respect to the former.

Figure 6 shows the opera t ion of a one-dimensionM synchronizat ion task: a 3-
bit counter. The result ing non-uni form CA converges into a period-8 cycle upon
presentat ion of a r a n d o m initial configuration. The software solution is based
on a 2-state CA, with connect ivi ty radius r = 3, derived f rom the co-evolved,
7" = 1 CA. This is achieved by "interlacing" three r = 1 CAs (thus, the grid
size is mul t ip l ied by 3), in a s imilar manne r to tha t used for obta in ing the 2-bit
counter. The clock of cells 0, 3, 6, ... functions normal ly , tha t of cells 1, 4, 7 is
divided by two (i.e., these cells change s ta te every second t ime step with respect
to the "fast" cells), and the clock of cells 2, 5, 8, ... is divided by four (i.e., these
cells change s ta te every fourth t ime step with respect to the fast cells).

117

Fig. 5. The one-dimensional synchronization task: A 2-bit counter

5 R e s u l t s

The original idea of co-evolving cellular-automata to perform complex tasks is
due to Moshe Sipper (Sipper 1994, and main of his most recent investigation may
found in the companion paper 1996b. He has performed his experiments by simu-
lating uni-dimensional (and bi-dimensional) networks of 150 two-state automata.
Itis simulations are running on UltraSparc 1 workstation. He programmed a 256
cells network and adapted the generation cycle to fit our working conditions. On
an UltraSparc 1 workstation, the time consumed by 1 generation is about 60 to
70 seconds. As any part off the process is software simulated, displaying results
is not a considerable effort, which is not the case with hardware emulation.

5.1 H a n d l i n g c r u d e d a t a

Althought the Meta-Box allows ASIC designers and "evolutionist controlers" to
share the same hardware, with respect to the data to be handled as well as the
way they are handled, their repective points of view completely differ. For an
ASIC builder, a glance at some waveform is sufficient to his verifying task (Cf.

118

Fig. 6. The one-dimensional synchronization task: A 3-bit counter

Fig. 7). Conversely, the "evolutionist" absolutely needs to go throught a com-
plete sequence of "snapshots" targett ing the cell states. In order to control the
evolution of the CA network, two types of data are necessary to be considered:

1. The history of a pat tern along the working cycles of the au toma ta (from 256
iterations up to 512 depending on the size of the cell array (Cf. Fig. 4 - 6).

2. The content of the 256 transition rules memories (in order to compare the
evolution all-over the different generations).

119

The first type of data is generated by launching 256 times the emulator for one
step, and reading the states of the 256 cells. A MEL procedure (DumpPattern)
has been written to perform these operations. Thousands of values displayed
along the waveform do not give any pertinent information (Cf. Fig. 7). So we
choose to write a viewing tool able to display pixelmap files, and to create such
a file in the MEL procedure.

Fig. 7. Waveform showing probed signals and vectors

The second type of data requires to dump all the rules memories into a file.
Again, a bidimensionnal representation being needed for clarity, the values are
read into the memories and dumped into a pixelmap file by a MEL procedure
(DumpRules). When both history and rules patterns are displayed together, they
give a good idea of the behavior of each cell and a good representation of the
rules transfer among the generations cycles. Figure 8 shows such data extracted
during a run. In this figure, the trend for a cell to copy fitter neighbor rules
appears clearly in the bottom part. Between regions of same rules, interfaces

120

appear, that show the cross-over behavior (copy randomly the rules of the two
neighbors if they are both fitter). In this figure, the function to be fitted is
density. The result (top part) after 100 generations is not perfect yet, but the
tendency is correct.

F]g. 8. Pattern execution and rules state after 100 generations

The full cycle (generation) of the system in the emulator is done after 66048
clock steps:

1. 256 working cycles are executed for each one of 256 patterns.
2. Two additional cycles are used at the end of each pattern execution, to

increment the fitness of the cells which have the right result.
3. 256 cycles are needed to perform the cross-over of the 64 locations of the

rules memories.

The last version of the design which has been compiled gave a limit frequency
of 1.362MHz. So a generation takes 50ms. Consequently, in our case, the speed-up
ratio between emulation and simulation is at least 1200 (Cf. Table 1). However,
the system has been simulated and optimized at high level, and this for a 2-state
automaton (ours is 4-state). For standard digital circuit simulations, like those
of Quicksim, an additional time factor of 102 to 10 a is expected, that will push
up the ratio to near a million. Finally, in emulation, increasing the number of
cells or the number of states doesn't reduce the speed, contrary to simulation.

121

Table 1. Speed-up factor (Emulation versus Simulation)

Criterion Emulation S500M Simulation Ultra-llRation E/S
Compilation time 30min
One generation cycle 50ms

40 s
60 s

1/45
1200

6 C o n c l u s i o n s

In this paper, we have shown that the remarquable increase in computational
power and the new generation of FPGAs have made it possible to couple gnetic
encoding and artificial evolution. Furthermore, instead of perfoming off-line evo-
lution using software to realize the genetic operations, we have opportunisti-
cally taken benefit from the nature of the programming devices to create and
implement the evolution tool itself. The system has been designed and tested
(debugged) and interesting results have emerge from these preliminary exper-
iments. This evolution tool reveals to be particularly efficient in computation
time. A speed-up ratio of about 1200 has been one of our key results. A second
adavantage oriented towards the next step of the evolving process is that the
results given by the emulator not only concern the evolution itself: a description
of the hardware implementation of the whole system is provided at the same
time as the validation of its behavior.

All the experiments given in this papers have been realized using the CSEM
Meta-Box (a 2-rack 31-board machine). The experiments we have realized can
be compared to some symbiosis phenomenon or certain processus happening in
living systems. Ordering and density provide symbiosis-like process. Synchro-
nization can be compared with the dynamic process leading to the emergence
of the myocard muscle in which cells start to pulse at a certain frequency. In
fact, all cells end by exchanging their genetic information so that nearly all cells
in a region are sharing the same genetic information. Between different regions,
membrane-like cells (with a typical clustering behavior) represent hard delim-
iter. They introduce a non-linearity in a sea of totally identicall cells. Emergent
behaviors come out of the clusters in which a suffisant large amount of identical
elements interconnected leads to global behavior much more complex than those
of elemntary units. Membrane-like cells enable to limit interference between dif-
ferent clusters, so any dramatic events occurring inside one cluster will not have
any significant impact on the complete system .

Some results about the sensitivity of GAs have already been obtained from
these preliminary experiments:

1. Uniform cross-over versus one-point cross-over speeds-up convergence.
2. Evolution is very sensitive (like the learning process as mentioned in the

neural network studies) to the input patterns. Using the same input patterns
cycle during each generation causes the network to reach a fitness equilibrium
that blocks the evolution.

During these experiments, we have had some difficulties with the hardware:

122

1. The connections. Global connections necessary for the input and output were
much ressource consumming

2. The size of the machine, the machine is modular so we can increase the
configuration at any time.

3. The time to first experiment and time to instruct a new users. Very efficient
for any any ASIC designer.

4. the ease of the compilator and the ease of managing experiments. The Cqike
control language is particularly efficient and enable a very large gain in the
necessary time to desribe and control experiment.

More complex experiments can take place now. The system is now ready
to experiment the fitting of complex functions (sorting, decoding, compression-
decompression), that would need 103 to 105 generations. The system described
here is more an "academic problem" than an industrial one. In order to tackle our
problem of Evolving Hardware, we have used the emulator more as an application
specific supercomputer than a real circuit emulator. However, the emulation flow
has been tested, and emulation promises a lot of new possibilities.

7 A c k n o w l e d g m e n t s

This design for emulation was the first at CSEM and in Switzerland. Passing
through this new kind of methodology caused the fix-up of several minor bugs
or misunderstanding of the tool philosophy. For their strong help, we would like
to thank:

At MGC-Meta-Systems: Jean-Marc Brault for his experience and availability
Gerard Morisset for software support

At MGC-Switzerland: Dominique Yerly for general support and key people
access Nish Parikh for software support

At CSEM: Vincent Rikkink and all his team (CLT), for local tools facilities,
very fast library make-up and strong help for bugs fixing.

R e f e r e n c e s

Brown S. D., Francis R. J., Rose J., Vranesic Z. G.: Field-Programmable Gate Arrays.
Kluwer Academic Publishers, 1992

Codd E. F.: Cellular Automata. Academic Press, 1968
Collins R. J. and Jefferson D. R.: "Antfarm: Towards Simulated Evolution" in Artificial

Li]e H Santa Fe Institute Series, Studies in the Sciences of Complexity, Volume X,
579-603, Addison-Wesley, 1992

Crutchfield J.P. and Mitchell M.: "The Evolution of Emergent Computation", Proceed-
ings of the National Academy of Sciences USA, 92(23), 1995

Gutowitz H.: Cellular Automata - Theory and Experiment. Elsevier, 1990
Hemmi H., Mizoguchi J. and Shimohara K.: "Development and evolution of hardware

behaviors" in Artificial IV, Brooks R. A. and Maes P. (Eds.), MIT Press, Cam-
bridge, MA, 371-376, 1994

123

Higuchi T. and Hirao Y.: "Evolvable Hardware with Genetic Learning - Toward Fault-
tolerant Systems", in Proc. of the Second Workshop on Synthetic World, Paris (F),
1995

Kauffman S.: The Origins o] Order - Self-organization and Slection in Evolution. Ox-
ford University Press, New York, 1993

Kauffman S.: At home in the Universe. Oxford University Press, New York, 1995
Langton C.: Cellular Automata Physica 10D, North-Holland, 1984
Langton C.: Artificial Life Santa Fe Institute Series, Studies in the Sciences of Com-

plexity, Volume IV Addison-Wesley, 1989
Langton C.: "Artificial Life" in Artificial Life H Santa Fe Institute Series, Studies in

the Sciences of Complexity, Volume X, Addison-Wesley, 1992
Marehal P., Piguet C., Mange D., Stauffer A., Durand S.: "Embryological Develop-

ment on Silicon" in Artificial IV, Brooks R. A. and Maes P. (Eds.), MIT Press,
Cambridge, MA, 365-370, 1994

Mitchell M., Hraber P.T. and Crutchfield J.P.: "Revisiting the Edge of Chaos: Evolving
Cellular Automata to Perform Computations", Complex Systems, 7:89-130, 1993

Mitchell M., Crutehfield J.P. and Hraber P.T.: "Evolving Cellular Automata to Perform
Computations: Mechanisms and Impediments", Physica 75D, 361-391, 1994

Mitchell M.: An introduction to Genetic Algorithmss, MIT Press, Cambridge, MA,
1996

Moore W. and Luk W.: FPGAs. Abingdon, 1991
Moore W. and Luk W.: More FPGAs. Abingdon, 1994
Ray T.S.: "An Approach to the Synthesis of Life", in Artiflcial Life II Santa Fe Institute

Series, Studies in the Sciences of Complexity, Volume X, 371-408, Addison-Wesley,
1992

Sanchez E., Tomassini M. (Eds): Towards Evolvable Hardware - The Evolutionary En-
gineering Approach. Springer-Verlag, 1996

Sipper M.: "Non-uniform Cellular Automata: Evolution in Rule Space and Formation
of Complex Structures" in Artificial Life IV, R.A. Brooks and P. Maes (Eds), MIT
Press, 1994

Sipper M.: "Quasi-uniform Computation-Universal Cellular Automata" in Lecture
Notes in Computer Science, Moreno A., J.J. Merelo and P. Chac6n (Eds), Springer-
Verlag, 1995

Sipper M.: "Co-evolving non-uniform Celullar Automata to Perform Computations"
in Physica 92 D, 193-208, North-Holland, 1996a

Sipper M.: "Designing Evolware by Cellular Programming" in Proceedings o] the
First International Conference on Evolvable Systems: from Biology to Hardware,
Tsukuba (Japan), 1996b

Taub A. H.: John yon Neumann - Collected Works. Volume V, 288-328. Macmillan,
New York, 1961-1963

Thearling K. and Ray T.S.: "Evolving Multi-Cellular Artificial Life", in Artificial IV,
Brooks R. A. and Maes P. (Eds.), MIT Press, Cambridge, MA, 283-288, 1994

Ulam S.: "On Some Mathematical Problems Connected with Patterns of Growth of
Figures", in Essays on Cellular Automata, Burks A. W. (Ed.), Univ. of Illinois
Press, 1970

yon Neumann J.: Theory of Self-Reproduction Automata. Edited and completed by
A.W. Burks, Univ. of Illinois Press, 1966

Wolfram S.: Theory and Applications of Cellular Automata. World Scientific Publishing
Co. Pte. Ltd., 1986

124

Zeleny M., Klir G. J. and I:lofford K. D.: "Precipitation Membranes, Osmotic Growths
and Synthetic Biology", in Artificial Life Santa Fe Institute Series, Studies in the
Sciences of Complexity, Volume IV, 125-139, Addison-Wesley, 1989

