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"The creatures cruise silently, skimming the surface of their world with the 
elegance d i c e  skaters. They move at varying speeds, some with the variegated 
cadence of vacillation, others with what surely must be firm purpose." 

Steven Levy - Artificial Life - The Quest for  a New Creation 

A b s t r a c t .  For a more than a decade, the idea of applying the biological 
principle of natural evolution to artificial systems in order to create or to 
improve digital ecologies has emerged from different laboratories. During 
the past couple of years, a new trend consists in applying these investiga- 
tions to hardware design. This concept is called "Evolvable Hardware". 
For this quest, hardware emulation offers an alternative approach to the 
development of a generic evolvable system including fitness evaluation. 
Compared to a software solution, emulation can be on the order of a 
million times faster which is of higher interest when billion steps of evo- 
lution are necessary. A further advantage of emulation is to provide the 
description of the VLSI to be implemented as well as a validation of its 
behavior. 
In this paper, we describe the way followed to implement the system 
(cellular automata and the surrounding evolutionary control logic) as a 
hardware description in an emulator. For different examples presented 
in this paper, reasonable with respect to simulation, processing time 
of hardware emulation versus software simulation are compared. The 
time saved by hardware emulation has given the opportunity to increase 
the complexity of the "evolving organism" by including the selection of 
intervening neighbors in the parameter selected by evolution. 

1 I n t r o d u c t i o n  

Recent advances in the field of  Compu te r  Engineering (circuit synthesis, pro- 
g rammable  devices and artificial ecologies) as well as in Molecular Biology (em- 
bryology, genetics and immune  systems) combined with a bet ter  unders tanding  
of dynamical  systems have paved the way of re-breathing life into the old dream 
of construct ing biological-like machines. This theme, first raised a lmost  fifty 
years ago by one of  the founding father of  cybernetics,  John  von Neumann,  is 
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based on the concepts of self-reproduction and self-repair (von Neumann 1966). 
Unfortunately, the technologies available at the time as well as the "molecular 
level" he had addressed (Marchal 1994) was far removed from that necessary 
to implement his idea. The remarkable increase in computional power and more 
recently, the appearance of a new generation of programmable logic devices, i.e., 
Field Programmable Gate Arrays (Brown 1992, Moore 1991, Moore 1994), have 
made it possible to couple genetic encoding and artificial evolution. We have 
hence reached and crossed a technological barrier, beyond which we no longer 
need to content ourselves with traditional approaches to engineering design, we 
rather can now evolve machines to attain the desired behavior (Sanchez 1996). 

Our main focus, in this paper, is to increase the speed of "digital ecologies" 
evolution. As a consequence, the saved time has been used to increase the com- 
plexity of the "evolving organism", so the selection of intervening neighbors has 
been added as a new possible parameter in the evolution process. Hence, the 
evolution process acts on the transition table and on the neighborhood as well. 
Preliminary results shown in this paper address the evolution of non-uniform cel- 
lular automata  (CA) to perform computational algorithms, an approach referred 
to as cellular programming (Sipper 1994). Section 2 reviews the investigations 
performed on digital ecologies evolution. Section 3 briefly describes the advan- 
tages offered by the hardware emulation versus software simulation. Section 4 
presents the necessary steps to implement hardware evolution on the emulator. 
Section 5 describes preliminary results before concluding remarks of section 6. 

2 Evolving Digital Ecologies 

Is it possible to actually evolve a real creature? To start with some inert lump 
of information and, compressing billions of years of activity into something a bit 
more manageable (a night~ a week, even a year) to wind up with life? Can one 
indeed follow the path apparently taken on earth, so that something as simple 
as a bacterium could make its way up the evolutionary ladder into something as 
complex as a multicellular organism? These are some of the questions that  lead 
research investigations on evolving digital ecologies. 

For more than a decade, the idea of applying the biological principle of natu- 
ral evolution to artificial systems in order to create or to improve digital ecologies 
has emerged from different laboratories. Three schools of thought may be distin- 
guished. The very first one, related to the evolution of one individual, is led by 
Stuart Kauffman (Kauffman 1993, Kauffman 1995). This research was first ori- 
ented towards the emergence of life on earth. Kauffman's approach is driven by 
the occurrence of self-organization, i.e., the spontaneous emergence of order: a 
type of energy-sink in which an ergodic dynamical system will fall after a certain 
transient period. For instance, if oil-droplets in water manage to be spherical, or 
if snowflakes assume their evanescent sixfold symmetry:  physiochemical reasons 
must be invoked, none of these effects have anything to do with natural selection. 
This research led him to consider that complex systems, poised on the bound- 
ary between order and chaos, are the ones best fit to adapt by mutat ion and 
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selection. Such systems appear not only to be able to coordinate complex and 
flexible behavior but also to respond to changes in their environment. Kauffman 
pointed out that promising indications that linked coevolving complex systems 
are led by selection to form ecosystems whose members mutually attain the edge 
of chaos. 

The second school of thought, related to the evolution of the species, is led 
by Thomas Ray (Ray 1992, Thearling 1994). Ray models his system on a later 
stage in life's development, the explosion of biological diversity that signaled the 
onset of the Cambrian Era, roughly six hundred million years ago. From a rela- 
tive paucity of phyla, the earth teemed with unprecedented new life forms. Ray 
has developed an ecological system, called Tierra, in which computer programs 
(digital ecologies) compete for survival in a "physical" environment consisting 
of the energy resource (CPU time) and the memory space. The implicit fitness 
function favors the evolution of creatures which are able to replicate with less 
CPU time. However, must of the evolution consists of creatures discovering ways 
to exploit one another. 

The third school of thought lies somewhere in between the previous ones; it 
comes after the appearance of life on earth, but long before the Cambrian Era. 
It nearly corresponds to the emergence of multicellular organisms by gathering 
single cells into a colony, something starting with the symbiosis phenomenon. 
The activists in this field include M. Mitchell, (Mitchell 1993, 1994, 1996), J.P. 
Crutchfield (Crutchfield 1995) working on uniform one-dimensional CAs, and 
M. Sipper (Sipper 1994, 1995, 1996a) working on non-uniform (heterogeneous) 
CAs. In order to realize computational tasks of the same complexity, an homo~ 
geneous environment implies a larger neighborhood. So heterogeneity enables to 
decrease the size of the neighborhood and hence to decrease the amount of both 
computation time and memory space. 

2.1 Evolvable Hardware  

During the past years, a new trend consists in applying these investigations to 
hardware design. This concept is called "Evolvable Hardware" (Hemmi 1994, 
ttiguchi 1995). Evolution may be realized on-line or off-line. In the on-line hard- 
ware evolution, each individual is an autonomous physical entity, ideally capable 
of modifying itself; this occurs as a result of directly sensing feedback signals 
communicated by a suitable physical environment and possibly by other mem- 
bers of a population of similar entities. In the off-line case, evolution design is 
carried out as a software simulation, with the resulting satisfactory solution (de- 
sign) used to configure the programmable hardware. To date, on-line evolution 
presents practical difficulties and the genetic operations (selection, mutation, 
re-combination) as well as fitness evaluation are usually performed off-line in 
software. This paper, together with its companion paper (Sipper 1996b) present 
two different ways of implementing truly on-line evolution. 
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2.2 A S I C  des ign  p h a s e  

During the design phase of an Application Specific Integrated Circuits (ASIC), 
after the schematics have been created and captured with an appropriate CAD- 
tool, some functional verifications are necessary to ensure that the circuit cor- 
rectly implements the given specs. Most often, this verification phase is purely 
virtual since it takes the form of simulation. Behavioral models of gates, flip-flops 
and all the other primitive components of the design, along with the netlist de- 
scribing their interconnections, are analyzed and checked by the circuit simulator 
program. Special files describing the input stimuli as well as awaited responses 
are introduced so the simulator is able to check circuit dynamics and report 
(graphically) behavioral discrepancies as a function of time. 

2.3 I m p r o v i n g  s i m u l a t i o n  b y  us ing  e m u l a t i o n  

Hardware emulation offers an alternative approach to function verification that  
can be on the order of a million times faster than simulation, which is of higher 
interest when billion steps of evolution are necessary. A hardware emulator con- 
tains a large pool of programmable devices. General purpose logic functions can 
be configured and interconnected to exactly match the functional behavior of 
a given design. Since hardware emulation is by essence a hardware implemen- 
tation of the design, each and every part runs concurrently, hence leading to a 
solution much faster than simulation. Although an emulator does not provide a 
gate-to-gate implementation of the design (it produces a logical equivalent im- 
plementation), it provides a more important  advantage: the description of the 
VLSI to be implemented as well as a validation of its behavior. 

3 H a r d w a r e  E m u l a t o r  

The Meta-Systems Simexpress is a new original digital emulation solution, for 
which full custom circuits (called Meta) have been designed to optimize the 
mapping and routing of the netlists to be emulated. The emulator acts like a 
giant FPGA on which the circuit, to be tested and debugged, can be mapped. 

3.1 E m u l a t o r  d e s c r i p t i o n  

The emulator is based on a building bloc called BLP (French acronym for Pro- 
grammable Logic Block), which resembles some FPGA solutions but has been 
optimized for emulation. It contains a 16-bit LUT which allows 4-input 1-output 
logic functions to be configured. Each Meta-chip contains 128 BLPs, with the 
necessary control and interconnect logic. The boards of the emulator (logic cards) 
contain 24 times the trio composed of one Meta-chip, one 32k 8-bit static RAM 
and one 1Mbit VRAM. The static RAMs provide possibilities to map memo- 
ries described in the netlist. The VRAMs sample all the internal nodes for logic 
analysis of the netlist. A logic card allows the mapping of around 20kgates. The 
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emulator itself is composed of 1 to 6 racks. Each rack contains up to 23 logic 
cards. Various other cards are provided in addition, like I /O cards (enabling 
external connections for on-board emulation), memory cards (emulation of huge 
memories of up to 64Mbytes/card), and prototype cards used when special logic 
has to be inserted into the emulator. The version used at CSEM is a 2 racks 
emulator equipped with 31 logic-cards plus one 336-p I /O board. This gives a 
total amount of nearly 600 kgates. 

3.2 C o m p i l a t i o n  

The emulator must be configured like a huge FPGA. The global configuration of 
the emulator is created by compilation of an ANF netlist (ANF netlist language 
allows designers to describe hierarchical designs). The netlist relies on four ob- 
jects (models, instances of models, signals and connectors). In our experiments 
we have exclusively made use of the primitives provided with the machine: Meta- 
lib (Meta-lib is a library of logic gates and logic blocks for which a direct mapping 
on the Meta-chip is provided) or Meta-memories (Meta-memories enable the user 
to make use of memories available on each board). The compilation tool, called 
XMCI, handles the ANF netlist, analyzes it, re-synthesizes and optimizes it in 
different ways according to the user's need. Optimizations are of 2 types: area 
and delay. Three levels of optimization are available for each of them. Finally, 
XMCI computes the maximum emulation frequency of the design. This feature 
is possible because inter-gate delays are fixed: between 2 gates internal to a chip, 
between 2 gates belonging to different chips on the same board, between 2 gates 
belonging to different chips on the same rack and between 2 gates belonging to 
2 different racks. So knowing the size of the design and how it is downloaded on 
the machine, makes it is possible to compute the maximum emulation frequency. 

3.3 E m u l a t i o n  

Emulation is performed using the MetaSystem Emulation Language (MEL) tool, 
which loads the emulator with the configuration file, and allows to run control, 
to perform logic analysis, to fine tune triggering features, and to create the 
necessary files needed for patterns verification. MEL can be driven by procedures 
written in a C-like code, for complex control with repetitive operations. All 
the signals or vectors (busses) to be probed can be displayed in a waveform. 
Input control can be done through monitors, where any vector or signal can be 
displayed and modified. To fill-up these two forms, a navigator gives hierarchical 
access to any node or instance of the netlist. Each node can be sampled, without 
recompilation. As a consequence of optimization, some nodes may automatically 
be removed by XMCI. To avoid this, a Meta device, called Meta Visibility, is 
added in the netlist. It can be connected in the original schematic to force the 
node to appear in the final netlist. Debugging the system must be done at a 
maximum 1 MtIz frequency, due to the limitations of the VRAMs handling the 
probing during digital analysis. Indeed, standard 1 Mbit VRAM serial pipes 
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work at 32 MHz on 4 channels (128 Mbit/s). Hence, the maximum speed to 
sample 128 BLPs outputs is 1 MHz. 

4 First Experiments 

In a first investigation phase, we have addressed the co-evolution of a cellular 
automaton to perform computations and apply it to different computational 
tasks: density, synchronization and sorting. The goal is to let the global function 
emerge from local interactions. Evolution consists of modifying the transition 
function of each automaton according to the local fitness - adequacy of each 
cell with respect to the awaited response. Simulating this kind of automata can 
be considered a complex task, since the number of necessary evolution cycles 
is too huge for a reasonable amount of time. All explanations concerning the 
simulation of these tasks may be found in the companion paper (Sipper 1996b). 

4.1 D y n a m i c s  a n d  e v o l u t i o n  

The first step in this domain has been to apply genetic algorithms to a uni- 
dimensional, 256 cells, 4-state cellular automata.  The initial state is loaded at 
the beginning as an input pattern (Cf. Fig. 1). 
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Fig. 1. Block scheme of the dynamic process 
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We then let the system go through its dynamics for a period at least as long 
as the network's size. This is the mean t ime necessary to leave the transients 
due to the circular bordering conditions we have chosen. So after 300 iterations, 
the pat tern  has changed, depending on the initial value of the cell and on the 
transition rule of each cell (randomly choosen at start) .  This "final state 1'' is 
considered as the result of the function performed by the CA network. The final 
state of each cell is compared with the expected result. If  they are equal, the 
fitness value of the cell is incremented, else the value remains untouched. This 
experiment is repeated for 256 times (over 8k possible initial configurations), 
providing each cell with a different fitness value. The evaluation of hundreds 
of initial configurations, guarantees not to be stuck in some local minirrmm 
corresponding to a precise initial seed and given transition rules. After these 
experiments, we can be confident in the value shown by the fitness evaluator 
located in each cell. Here takes place the evolution by production of a new 
transition rule. The genetic algorithm changes the transition rule of each cell 
according to this definition: 

1. If the fitness of the current cell is higher or equal to the fitness of its two 
neighbours, then the transition rule remains the same. 

2. If one and only one cell has a better  fitness value, then its transition rule is 
completely copied into the current cell transition rule. 

3. If the two neighbours have a bet ter  fitness value, then their rules are copied 
randomly from one or the other into the cell (this operation is called cross- 
over). 

It is clear that  simulation of such kind of system requires huge amounts  of 
computat ion time: thousands of iteration steps for hundreds of au toma ta  running 
concurrently. This is the major  reason why emulation has been chosen instead 
of simulation to perform the evaluation. After these first computat ional  tasks 
(leading to fixed-point at tractors  for which two successive states are sufficient), 
we have addressed a counting task, for which the first neighborhood was no 
longer sufficient, and for which we were able to choose the length (greater than 
2) of the cyclic attractor.  

4.2 S y s t e m  d e s c r i p t i o n  

Figure 2 shows the main constituent of the system. It  consists of: 

1. The sequencer, called EVOLVER, responsible of both  dynamics and evolution. 
It includes the INITIALIZATION control block, the DYNAMICS control block, 
the FITNESS control block, the EVOLUTION control block. 

2. The SEEDS memory. It  stores a set of possible seeds for the evolution. This 
strategy enable to repeat the same experimentat ion more than once. 

1 Note that this final state, should be stable for a convenient period of time. Convenient 
means that, depending on the complexity of the awaited result, it can be 2 iterations 
for fixed-point attractor or a complete cycle plus one iteration for a cyclic attractor. 
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3. The awaited response memory, called RESULTS. For each seed stored in the 
seed memory, this memory provides the corresponding results. 

4. The noise memory, called RANDOM. It is used to store random patterns 
used for the genetic operation of cross-over 2. This strategy enables to repeat 
experiment with the same random numbers. 

5. The array of cells. It contains 256 instantiations of the cell schematic (Fig. 3). 
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Fig. 2. Top-level schematic of the system 

Figure 3 depicts the block scheme of one element of the cell array. Each cell 
computes its new state (ST+l) by using its current state (ST) and the one of the 
nearest neighbors (left and right), to address a look-up table (LUT). This LUT 
provides the next state of the considered cell. The set of values stored in this 
LUT, that define the dynamics of the automata,  is called TRANSITION RULES. 
Means are provided to check if the final state and the AWAITED RESULTS are 
identical. In this case, the FITNESS COUNTER is incremented. The values of the 
FITNESS COUNTER is then used to modify the TRANSITION RULES. 

4.3 C o m p i l a t i o n  t i m e  a n d  s p e e d  

In our case, the compilation gave a result file filling between 20 and 24 logic 
cards (all kinds and levels of optimization scanned). The emulation frequencies 
were between 1Mttz and 1.8Mhz. The only problem, coming from the hundreds 
of memory used, was the inability to route connections for some versions of the 
schematic. In fact, the memory address bus had to be propagated through all the 
256 cells, consuming a lot of interconnection resources. A wide range of options 
allows to fine control parameters for compilation. We reduced the filling factor, 

2 The mutation has not been implemented in this very first experiments. Hence, it 
may be possible to get stuck in a local minimum 
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Fig. 3. Cell's schematic 

which determines the level of compaction of parts into a Meta-chip. This oper- 
ation gave improvements. A problem that  remains is that a network of iterative 
cells quickly requires extensive interconnection resources, due to the necessity 
of having global nets. This necessity of having global nets was a consequence of 
our choice to be able to repeat the same experiments with same initial values 
and same random numbers. A solution, using LFSRs (Linear Feedback Shift 
Registers), could easily overcome this problem. The compilation time oscillated 
between 30 and 40 minutes. 

4.4 C o u n t i n g /  M a c r o - a u t o m a t o n  

As mentioned previously, all results concerning the tasks of density, sorting and 
corresponding discussions may be found in the companion paper (Sipper 1996b). 
We just briefly report the result of the synchronization task as a starting point 
to our investigations. 

Figure 4 demonstrates the operation of a co-evolved, non-uniform, r = 1 CA. 
White squares represent cells in state 0, black squares represent cells in state 1. 
The pattern of configurations is shown through time (which increases down the 
page). Note that upon presentation of a random initial configuration the grid 
converges to an oscillating pattern, alternating between an all-0 configuration 
and an all-1 one; this period-2 cycle may be considered a 1-bit counter. Building 
upon this evolved CA, 2- and 3-bit counters can be constructed, as demonstrated 
in Fig. 5 and 6. 

Figure 5 depicts the operation of a one-dimensional synchronization task: a 2- 
bit counter. The resulting non-uniform CA converges into a period-4 cycle upon 
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Fig.  4. The one-dimensional synchronization task: 1-bit counter 

presenta t ion of  a r a n d o m  initial configuration.  Due to m e m o r y  requiremeents  
problems,  the software solution is based on a non-uni form,  2-s tate  CA, with 
connect ivi ty radius r = 2, derived f rom the co-evolved, r = 1 CA, while the 
hardware  imp lemen ta t ion  directly uses 4-s tate  CA, with connect ivi ty  radius r = 
1. The  software imp lemen ta t ion  is achieved by "interlacing" two r = 1 CAs, in 
the following manner :  Each cell in the r = 1 CA is t r ans fo rmed  into an r = 2 cell, 
two duplicates of  which are placed next  to each other  ( the result ing gr id 's  size is 
thus doubled).  This  t r ans fo rma t ion  is carried out  by "blowing up" the r = 1 rule 
table  into an r = 2 one, creating f rom each of the (eight) r = 1 table  entries four 
r = 2 table  entries, result ing in the 32-bit r = 2 rule table.  For example ,  entry  
110 --+ 1 specifies a next -s ta te  bit of 1 for an r = 1 ne ighborhood of 110 (left 
cell is in s ta te  1, central  cell is in s ta te  1, right cell is in s ta te  0). Trans forming  
it into an r = 2 table  entry  is carried out  by "moving"  the adjacent ,  distance-1 
cells to a distance of 2, i.e., 110 ~ 1 becomes 1X1Y0 ---, 1; filling in the four 
pe rmuta t ions  of  (X, Y),  i.e., (X, Y) = (0, 0), (0, 1), (1, 0), (1, 1), results in the 
four r = 2 table  entries. The  clock of the odd numbered  cells funct ions twice as 
fast as tha t  of the even-numbered  cells; this means  t ha t  the la t ter  upda te  their 
s ta tes  every second t ime  step with respect  to the former.  

Figure 6 shows the opera t ion  of a one-dimensionM synchronizat ion task: a 3- 
bit counter.  The  result ing non-uni form CA converges into a period-8 cycle upon 
presentat ion of a r a n d o m  initial configuration.  The  software solution is based 
on a 2-state  CA, with connect ivi ty  radius r = 3, derived f rom the co-evolved, 
7" = 1 CA. This  is achieved by "interlacing" three r = 1 CAs (thus, the grid 
size is mul t ip l ied by 3), in a s imilar  manne r  to tha t  used for obta in ing  the 2-bit 
counter.  The  clock of cells 0, 3, 6, ... functions normal ly ,  tha t  of  cells 1, 4, 7 . . . .  is 
divided by two (i.e., these cells change s ta te  every second t ime  step with respect  
to the "fast" cells), and the clock of cells 2, 5, 8, ... is divided by four (i.e., these 
cells change s ta te  every fourth t ime  step with respect  to the fast  cells). 
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Fig. 5. The one-dimensional synchronization task: A 2-bit counter 

5 R e s u l t s  

The original idea of co-evolving cellular-automata to perform complex tasks is 
due to Moshe Sipper (Sipper 1994, and main of his most recent investigation may 
found in the companion paper 1996b. He has performed his experiments by simu- 
lating uni-dimensional (and bi-dimensional) networks of 150 two-state automata.  
Itis simulations are running on UltraSparc 1 workstation. He programmed a 256 
cells network and adapted the generation cycle to fit our working conditions. On 
an UltraSparc 1 workstation, the time consumed by 1 generation is about 60 to 
70 seconds. As any part off the process is software simulated, displaying results 
is not a considerable effort, which is not the case with hardware emulation. 

5.1 H a n d l i n g  c r u d e  d a t a  

Althought the Meta-Box allows ASIC designers and "evolutionist controlers" to 
share the same hardware, with respect to the data to be handled as well as the 
way they are handled, their repective points of view completely differ. For an 
ASIC builder, a glance at some waveform is sufficient to his verifying task (Cf. 
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Fig. 6. The one-dimensional synchronization task: A 3-bit counter 

Fig. 7). Conversely, the "evolutionist" absolutely needs to go throught a com- 
plete sequence of "snapshots" targett ing the cell states. In order to control the 
evolution of the CA network, two types of data  are necessary to be considered: 

1. The history of a pat tern  along the working cycles of the au toma ta  (from 256 
iterations up to 512 depending on the size of the cell array (Cf. Fig. 4 - 6). 

2. The content of the 256 transition rules memories (in order to compare the 
evolution all-over the different generations). 
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The first type of data is generated by launching 256 times the emulator for one 
step, and reading the states of the 256 cells. A MEL procedure (DumpPattern) 
has been written to perform these operations. Thousands of values displayed 
along the waveform do not give any pertinent information (Cf. Fig. 7). So we 
choose to write a viewing tool able to display pixelmap files, and to create such 
a file in the MEL procedure. 

Fig. 7. Waveform showing probed signals and vectors 

The second type of data requires to dump all the rules memories into a file. 
Again, a bidimensionnal representation being needed for clarity, the values are 
read into the memories and dumped into a pixelmap file by a MEL procedure 
(DumpRules). When both history and rules patterns are displayed together, they 
give a good idea of the behavior of each cell and a good representation of the 
rules transfer among the generations cycles. Figure 8 shows such data extracted 
during a run. In this figure, the trend for a cell to copy fitter neighbor rules 
appears clearly in the bottom part. Between regions of same rules, interfaces 
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appear, that  show the cross-over behavior (copy randomly the rules of the two 
neighbors if they are both fitter). In this figure, the function to be fitted is 
density. The result (top part) after 100 generations is not perfect yet, but the 
tendency is correct. 

F]g. 8. Pattern execution and rules state after 100 generations 

The full cycle (generation) of the system in the emulator is done after 66048 
clock steps: 

1. 256 working cycles are executed for each one of 256 patterns. 
2. Two additional cycles are used at the end of each pattern execution, to 

increment the fitness of the cells which have the right result. 
3. 256 cycles are needed to perform the cross-over of the 64 locations of the 

rules memories. 

The last version of the design which has been compiled gave a limit frequency 
of 1.362MHz. So a generation takes 50ms. Consequently, in our case, the speed-up 
ratio between emulation and simulation is at least 1200 (Cf. Table 1). However, 
the system has been simulated and optimized at high level, and this for a 2-state 
automaton (ours is 4-state). For standard digital circuit simulations, like those 
of Quicksim, an additional time factor of 102 to 10 a is expected, that will push 
up the ratio to near a million. Finally, in emulation, increasing the number of 
cells or the number of states doesn't reduce the speed, contrary to simulation. 
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Table 1. Speed-up factor (Emulation versus Simulation) 

Criterion Emulation S500M Simulation Ultra-llRation E/S 
Compilation time 30min 
One generation cycle 50ms 

40 s 
60 s 

1/45 
1200 

6 C o n c l u s i o n s  

In this paper, we have shown that the remarquable increase in computational 
power and the new generation of FPGAs have made it possible to couple gnetic 
encoding and artificial evolution. Furthermore, instead of perfoming off-line evo- 
lution using software to realize the genetic operations, we have opportunisti- 
cally taken benefit from the nature of the programming devices to create and 
implement the evolution tool itself. The system has been designed and tested 
(debugged) and interesting results have emerge from these preliminary exper- 
iments. This evolution tool reveals to be particularly efficient in computation 
time. A speed-up ratio of about 1200 has been one of our key results. A second 
adavantage oriented towards the next step of the evolving process is that  the 
results given by the emulator not only concern the evolution itself: a description 
of the hardware implementation of the whole system is provided at the same 
time as the validation of its behavior. 

All the experiments given in this papers have been realized using the CSEM 
Meta-Box (a 2-rack 31-board machine). The experiments we have realized can 
be compared to some symbiosis phenomenon or certain processus happening in 
living systems. Ordering and density provide symbiosis-like process. Synchro- 
nization can be compared with the dynamic process leading to the emergence 
of the myocard muscle in which cells start to pulse at a certain frequency. In 
fact, all cells end by exchanging their genetic information so that nearly all cells 
in a region are sharing the same genetic information. Between different regions, 
membrane-like cells (with a typical clustering behavior) represent hard delim- 
iter. They introduce a non-linearity in a sea of totally identicall cells. Emergent 
behaviors come out of the clusters in which a suffisant large amount of identical 
elements interconnected leads to global behavior much more complex than those 
of elemntary units. Membrane-like cells enable to limit interference between dif- 
ferent clusters, so any dramatic events occurring inside one cluster will not have 
any significant impact on the complete system . 

Some results about the sensitivity of GAs have already been obtained from 
these preliminary experiments: 

1. Uniform cross-over versus one-point cross-over speeds-up convergence. 
2. Evolution is very sensitive (like the learning process as mentioned in the 

neural network studies) to the input patterns. Using the same input patterns 
cycle during each generation causes the network to reach a fitness equilibrium 
that blocks the evolution. 

During these experiments, we have had some difficulties with the hardware: 
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1. The connections. Global connections necessary for the input and output were 
much ressource consumming 

2. The size of the machine, the machine is modular so we can increase the 
configuration at any time. 

3. The time to first experiment and time to instruct a new users. Very efficient 
for any any ASIC designer. 

4. the ease of the compilator and the ease of managing experiments. The Cqike 
control language is particularly efficient and enable a very large gain in the 
necessary time to desribe and control experiment. 

More complex experiments can take place now. The system is now ready 
to experiment the fitting of complex functions (sorting, decoding, compression- 
decompression), that would need 103 to 105 generations. The system described 
here is more an "academic problem" than an industrial one. In order to tackle our 
problem of Evolving Hardware, we have used the emulator more as an application 
specific supercomputer than a real circuit emulator. However, the emulation flow 
has been tested, and emulation promises a lot of new possibilities. 
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