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Abstract—Field-programmable gate arrays (FPGAs) are large, fast integrated circuits—that can be modified, or configured, almost at
any point by the end user. Within the domain of configurable computing, we distinguish between two modes of configurability:
static—where the configurable processor’s configuration string is loaded once at the outset, after which it does not change during
execution of the task at hand, and dynamic—where the processor’s configuration may change at any moment. This paper describes
four applications in the domain of configurable computing, considering both static and dynamic systems, including: SPYDER (a
reconfigurable processor development system), RENCO (a reconfigurable network computer), Firefly (an evolving machine), and the
BioWatch (a self-repairing watch). While static configurability mainly aims at attaining the classical computing goal of improving
performance, dynamic configurability might bring about an entirely new breed of hardware devices—ones that are able to adapt within

dynamic environments.

Index Terms—Configurable computing, FPGAs, static configurability, dynamic configurability.

1 INTRODUCTION

WHEN one sets about to implement a certain computa-
tional task, then obtaining the highest performance
(speed) is unarguably achieved by constructing a
specialized machine, i.e., hardware. Indeed, this possibility
exists, e.g., in the form of Application-Specific Integrated
Circuits (ASICs); however, the price per application as well
as the turnover time (from design to actual operation) are
both quite prohibitive. Except for a small number of
specialized niches, the computing industry has, by and
large, converged onto the so-called general-purpose archi-
tecture, trading off the best possible performance in favor of
a much lower cost per application and shorter delivery
time. The gap between these two paradigms has been
narrowing over the past few years with the coming of age of
configurable computing.

Field-programmable gate arrays (FPGAs) are large, fast
integrated circuits—that can be modified, or configured,
almost at any point by the end user [1], [2]. A primary
distinction that this novel technology brings about is that
between programmable processors and configurable ones. The
programmable paradigm involves a (general-purpose)
processor, able to execute a limited set of operations,
known as the instruction set. The user’s (programmer’s) task
is that of providing a description of the algorithm to be
carried out, using only operations from this limited set. This
algorithm need not necessarily be written in the target
language (i.e., that of the given processor), since compila-
tion tools may be used; however, ultimately one must be in
possession of an assembly-language program, which can be
directly executed on the processor in question. The prime
advantage of programmability is the relatively short turn-
over time, as well as the low cost per application, resulting
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from the fact that one can (potentially swiftly) reprogram
the processor to carry out any other programmable task.

The configurable-computing paradigm can also be
regarded as one involving a processor that is able to
execute but a given set of operations—however, these are at
a much lower level. One controls the actual types of the logic
devices (such as AND, OR, registers, and flip-flops), the
input signals, and the output signals. The level at which the
end user can control the system’s operation, i.e., the design
level, is perhaps the fundamental difference between
programmable processors and configurable ones.

In both a programmable and a configurable processor, the
algorithm is ultimately expressed as a string of bits that is
stored in memory, with the difference being the manner in
which these bits are interpreted. A programmable processor
ceaselessly iterates through a three-phase loop, where an
instruction is first fetched from memory, after which it is
decoded, then to be passed on to the final execute phase—this
latter of which may require several clock cycles; this process is
then repeated for the next instruction, and so on. A
configurable processor, on the other hand, can be regarded
as having but a single, noniterative fetch phase: The
configuration string, fetched from memory, requires no
further interpretation and is directly used to configure the
hardware. No further phases or iterations are needed as the
processor is now configured for the task athand. The ability to
control the hardware in such a direct manner using a low-
level “instruction set,” is a double-edged sword: The user is
able to access a much wider range of functionality, with the
price to be paid being that of a more arduous design task.

So as to avoid any confusion, we shall speak of a program
when referring to a design (algorithm) within the program-
mable paradigm, and to a configuration or configuration
string (usually a simple bit sequence) when considering the
description of a configurable processor. (In analogy to the
term “programmer”—and again so as to avoid any
confusion—one might refer to the user of a configurable
processor as a configurer.)
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Within the domain of configurable computing one can
distinguish between two types of configuration strings:
static and dynamic. A static configuration string, aimed at
configuring the processor so as to perform a given function,
is loaded (once) at the outset, after which it does not change
during execution of the task at hand. Static configurability
has two main objectives: 1) Improving performance (i.e.,
execution speed) for a given function, which essentially
results in a rapid coprocessor for the task at hand (e.g., an
MPEG coprocessor)—thus, one can consider this an exten-
sion of the coprocessor concept; and 2) optimizing the
utilization of resources (gates and power consumption) so
as to use as much of the chip surface as possible at each
clock cycle. For example, one might divide the task at hand
into several subtasks, each of which is implemented as a
separate configuration. Task execution is achieved by
successively loading the subtask configurations, thus en-
suring that at each point the processor is optimized to
perform the part of the computation in question. Dynamic
configurability involves a configuration string that can
change during execution of the task at hand, with the two
main objectives being: 1) to adapt to changing (dynamic)
specifications (e.g., as with an autonomous robot that is
placed in a new environment) as well as to be able to handle
incomplete specifications; and 2) to eliminate human design
altogether. The first objective involves partial design,
namely, the configurer designs the system to exhibit a
certain general functionality, which is not necessarily the
ultimate task to be accomplished—this latter is attained
when the system dynamically changes its configuration
string during its operation (rather than at the design phase,
as with static systems). Partial design can ultimately lead to
the removal of the human configurer from the design cycle,
whereupon the system’s configuration is carried out
dynamically online. (We note in passing that, with the
advancement of configurable-computing technology, one
may eventually be able to configure the processor anew at
each clock cycle, producing, in effect, a rapid succession of
new machines.)

This paper describes four projects in the domain of
configurable computing, carried out in our lab over the past
five years. We shall consider both static and dynamic
systems that exhibit the wide range of characteristics
discussed above. We begin in Section 2 with the description
of two static systems: SPYDER (a reconfigurable processor
development system) and RENCO (a reconfigurable net-
work computer). Section 3 presents two dynamic systems:
Firefly (an evolving machine) and the BioWatch (a self-
repairing watch). Each system is described by four articles:
type, functional description, hardware description, and
performance gains (and—where relevant—a software de-
scription as well). Finally, we present our concluding
remarks in Section 4.

2 STATIC SYSTEMS
2.1 SPYDER: A Reconfigurable Processor
Development System

Type (Objective). Static (Improve performance).
Functional description. The main advantage of specialized
coprocessors is also one of their weaknesses: They can
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execute only their intended application. SPYDER (an
anagram of the letters of REconfigurable Processor Devel-
opment SYstem) is a reconfigurable coprocessor that self-
adapts to a given application in a manner which is
transparent to the user: The application is written in a
high-level language (rather than an assembly program) and
the compiler generates the best-adapted hardware descrip-
tion [3].

A processor consists of two parts: a control unit—a finite
state machine that handles the sequencing of operations of
the algorithm being executed, and a processing unit or data
path—the set of memory elements and operators needed to
store and process the variables of the algorithm.

The control unit has little influence on the degree of
adaptation of the processor to a given algorithm. Indeed, if
it is implemented as a microprogrammed machine, its
structure is almost fixed: A micromemory (to store the
microinstructions) linked to a sequencer (to generate the
address of the next microinstruction to be executed). On the
other hand, the processing unit’s architecture is of vital
import where the performance of the processor is con-
cerned: The number and the size of the memory elements,
the type of available operators, and their interconnection
with the memory elements, determine the number of clock
cycles needed to realize a certain operation.

Most reconfigurable processors enable the implementa-
tion of the two parts of the processor—indeed, they are
organized as an array of FPGA circuits, possibly connected
to other resources (memories, for example); the configurer
(or a compiler) generates the full processor configuration
for a given application [4]. Given the minor influence on
performance of the control unit’s architecture, SPYDER
takes a simpler approach, using a fixed control unit,
equivalent to a microprogrammed control unit composed
of a sequencer and a very large memory. The micropro-
gram, however, does not interpret a given assembly
language, rather, it is the program to be executed.

The reconfiguration of SPYDER thus takes place in the
processing unit, which consists of three FPGA circuits
connected to two banks of registers. Each FPGA maintains
an independent access to the registers in order to permit
parallel processing of the data and, hence, the implementa-
tion of superscalar architectures. This reconfigurability
presents two major limitations: the size of the FPGAs and
the number of registers.

The initial objective of the project was to provide
transparent hardware reconfiguration: The user would
write his program in a high-level language and the compiler
would generate both the code to be executed (the contents
of the memory of the control unit) and the configuration of
the three FPGAs. Given a certain application, the compiler
would automatically determine the optimal set of operators
and their possible concurrent utilization.

Given the complexity of such a compiler, we implemen-
ted an intermediate solution: The user determines the
operators and describes them in a high-level language
(C++). The compiler then generates the corresponding
configuration of the FPGAs. Finally, the user writes the
application using the predetermined set of operators. The
compiler generates the corresponding code and schedules
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Fig. 1. The SPYDER architecture.

the operations so as to attain a maximal degree of
parallelism.

As with standard coprocessors, SPYDER is connected to
a host computer, which handles input/output and runs the
development software.

Hardware description. SPYDER was implemented to
function as a SPARCstation coprocessor, using a double-
Europe board, connected to a SPARC processor by means of
a VME bus (Fig. 1).

The sequencer of the control unit is implemented by
means of a Xilinx XC4003 circuit. Its configuration is fixed:
16 different sequences divided into four categories (jump,
call subroutine, return of subroutine, and return) are
possible. The execution of each instruction takes four clock
cycles, but a four-phase pipeline permits the sequencer to
generate a new instruction address every clock cycle.

The program memory is separated from the data
memory as in Harvard architectures: The instruction
memory is 128 bits wide, while the data memory is 16 bits
wide. To fully exploit the parallel-processing capabilities,
the 128 bits of an instruction directly control all resources of
the processor without any intermediate decoding.

The three processing units are implemented using the
Xilinx XC4008 circuits. They are fully configurable and are
organized in a load/store fashion: The data is loaded
from the registers and the data memory is accessed only by
means of 1oad and store operations. At every clock cycle,
each of the processing units can read two 16-bit data words
and generate two 16-bit results, one per register block. They
can also generate one condition bit, which is used by the
sequencer, and up to 4-bit addresses to the registers. Finally,
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the four processing units are connected as a ring by means
of two 16-bit buses, in order to facilitate pipeline operations.

The operations of the processing units are completely
configurable and controlled by 21 bits of the instruction
word. The distribution and function of these 21 bits are
defined by the user and depend on the configuration of the
units.

To facilitate a change of context, the system uses a
register window mechanism, similar to that of the SPARC
processors [5]. The number of registers per window is also
configurable: windows of 4, 8, or 16 registers are possible.

Performance gains. SPYDER runs at only 8 MHz due to the
technology used when the project began and due to
economic reasons. However, the resulting performance of
SPYDER on three different applications—a simulation of
the Game of Life and two different image processing
algorithms (skeletonization and edge detection)—surpasses
several classical architectures.

A SPYDER implementation of Conway’s Game of Life
was compared with x1ife, the most popular software
version of this well-known cellular automaton. This
application involves a grid of cells, each one of which can
be in a given state at a given moment, which are updated
simultaneously in discrete time steps. Our interest here was
to study how fast the grid can be modified, i.e., how many
cell states can be updated per second. For a 608 x 608
matrix of cells, SPYDER—running at 8 MHz—computes the
future state of 115 million cells per second, while a
microSPARC machine—running at 85 MHz—is only cap-
able of computing the future state of 6.5 million cells per
second. The results of the other two applications are
delineated in [6].

The performance of SPYDER could be improved by
using current-day devices. The communication with the
host computer can also be improved: The VME bus was
chosen due to its simple implementation and disregarding
its low access speed. Nevertheless, the most important
enhancements must be done in the software, using new
developments in compilation techniques. We hope to one
day see a compiler sufficiently powerful to accomplish our
initial specifications: a system that automatically deter-
mines the optimal hardware implementation and maximal
degree of parallelism.

2.2 RENCO: A Reconfigurable Network Computer

Type (Objective). Static (Improve performance).
Functional description. The ability to store an application
in various (physical) locations, recently highlighted by the
introduction of the network computer, presents many
advantages: The vital resources of the computer (mass
memories, applications, software libraries, etc.) are exclu-
sively accessible through the network, thus reducing
maintenance costs while adding flexibility to the system.

RENCO (REconfigurable Network COmputer) adds the
power of reconfiguration to the network computer [1]: A
reconfigurable surface is associated with a standard net-
work computer in such a manner that the user can
download from the network not only his or her application,
but also the processor configuration able to optimally
execute it.
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Fig. 2. RENCO block diagram.

Although, for the moment, no software manufacturer
offers hardware configurations along with the software, we
are quite certain of the viability of this approach. As
mentioned above, there will soon be compilers able to
generate a hardware description given a standard program,
and one processor manufacturer (Motorola [7]) has already
announced a processor with a reconfigurable on-chip
surface.

Currently, RENCO is used for testing new codesign
methodologies along with their associated CAD tools, and
as a prototyping platform for dedicated processors.

Hardware description. RENCO is composed of two parts
(Fig. 2): a conventional network computer, based on a
Motorola MC68EN360 processor, and a reconfigurable area
(a cluster of FPGAs connected to their own memories and to
the processor bus). The user can design dedicated copro-
cessors for the 68360 or select them from a specialized
library and dynamically download them through the
network when necessary.

The network computer we have implemented is quite
conventional: A microprocessor connected to three types of
memory (256k x 16b of boot EPROM, 512k x 32b of Flash
RAM, and up to 16M x 32b of DRAM). The 68360 has been
chosen for its communication capabilities, for its integrated
memory controller, and for the availability of many soft-
ware tools.

The computer is connected to the network through an
Ethernet 10Base-T interface. This communication interface
is used at boot time for downloading the operating system,
the applications, and the hardware configurations. An RS-
232 interface is also available and is used to connect a
console to the computer. Several extension connectors allow
the user to expand the board features by adding specific
extension boards.

The reconfigurable part contains four Altera Flex 10K
FPGAs (10K130 or 10K250); these large FPGAs represent up
to one million programmable logic gates. Since they are
connected together, it is possible to split very large designs
into up to four parts. The processor bus is connected to the
four FPGAs, which can therefore be accessed as peripherals
by the processor and act, e.g., as coprocessors. Each FPGA is

connected to its own memories: 512k x 8b of SRAM and up
to 8M x 32b of DRAM. The processor can also access these
memories. RENCO is implemented on a 14-layer PCB.

Software description. The two parts of RENCO (network
computer and reconfigurable area) each require a specific
software:

e The network computer requires an operating sys-
tem, with complete management of the network
operations. After examining many possibilities, we
chose RTEMS' (Real-Time Executive for Multipro-
cessor Systems). It is a preemptive multitasking
operating system with rather modest memory
requirements. It also contains the drivers for
Ethernet and RS-232 and has already been adapted
for the 68360 processor. Furthermore, its source code
is free and a TCP/IP stack is available.

e Many software tools are necessary for the reconfi-
gurable part: a synthesizer, a monitor allowing
access to the resources and the configuration
loading, a debugger, a user interface, etc. The
implementation of all these tools is beyond our
reach and we decided to use commercial tools when
available (the synthesizer, for example) and to
concentrate only on the tools specific to our system.

The basic idea is to use Java to develop some of these

tools, a choice emanating from our desire to access RENCO
from many different platforms through the network. The
first step was to implement a Java virtual machine: We
chose Kaffe” as the source code since it is freely available
and because it has already been ported to the 68000
processor, therefore reducing our development work. In
addition to the standard Java application programming
interface (API), the user has at his or her disposal a board-
specific API that provides classes and methods for accessing
the board resources. Finally, board-specific code has been
written and collected into the Custom Hardware Library
(CHL), which includes utility functions for accessing the

1. http://www.oarcorp.com.
2. http:/ /www kaffe.org.
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Fig. 3. The Firefly evolware board. The system is an evolving, one-dimensional, nonuniform cellular automaton. Each of the 56 cells contains a
genome that represents its rule table; these genomes are randomly initialized, thereupon to be subjected to evolution. The board contains the
following components: 1) LED indicators of cell states (top), 2) switches for manually setting the initial states of cells (top, below LEDs), 3) Xilinx
FPGA chips (below switches), 4) display and knobs for controlling two parameters (“time steps” and “configurations”) of the cellular programming

algorithm (bottom left), 5) a synchronization indicator (middle left),

6) a clock pulse generator with a manually adjustable frequency from 0.1 Hz to 1

MHz (bottom middle), 7) an LCD display of evolved rule tables and fitness values obtained during evolution (bottom right), and 8) a power-supply
cable (extreme left). (Note that this latter is the system’s sole external connection.)

board resources. As with most reconfigurable systems, the
complexity of RENCO's software is much higher than that
of the hardware—it is still work in progress.

Performance gains. Our first goal is to test a novel but—in
our opinion—very promising idea: Considering the hard-
ware architecture as a downloadable resource (in addition
to the software). As hardware architecture libraries are
currently unavailable, we could not make full-blown
evaluations to date and we have not yet proceeded further
than the concept validation. Meanwhile, RENCO can also
be used for complex logic design prototyping [8]. In this
context, its large amount of reconfigurable logic and the
large memories attached to it represent an important
advantage.

3 DyYNAMIC SYSTEMS

3.1 The Firefly Machine

Type (Objective). Dynamic (Handle changing and/or
incomplete specifications).

Functional description. The idea of applying the biological
principle of natural evolution to artificial systems, intro-
duced more than four decades ago, has seen impressive
growth in the past few years. Usually grouped under the
term evolutionary algorithms or evolutionary computation, we
find the domains of genetic algorithms, evolution strategies,
evolutionary programming, and genetic programming [9].
As a generic example of artificial evolution, we consider
genetic algorithms.

A genetic algorithm is an iterative procedure that
involves a constant-size population of individuals, each
one represented by a finite string of symbols, known as the
genome, encoding a possible solution in a given problem
space. This space, referred to as the search space, comprises

all possible solutions to the problem at hand. The algorithm
sets out with an initial population of individuals that is
generated at random or heuristically. Every evolutionary
step, known as a generation, the individuals in the current
population are decoded and evaluated according to some
predefined quality criterion, referred to as the fitness, or
fitness function. To form a new population (the next
generation), individuals are selected according to their
fitness and then transformed via genetically inspired
operators, of which the most well-known are crossover
(“mixing” two or more genomes to form novel offspring)
and mutation (randomly flipping bits in the genomes).
Iterating this procedure, the genetic algorithm may even-
tually find an acceptable solution, i.e., one with high fitness.

One of the recent uses of evolutionary algorithms is in
the burgeoning field of evolvable hardware [10], [11], which
involves, among others, the use of FPGAs as a platform on
which evolution takes place. The Firefly machine is one
such example; our goal in constructing it was to demon-
strate a system in which all evolutionary operations
(selection, crossover, mutation, and fitness evaluation) are
carried out online, that is, in hardware [11], [12].

Firefly is based on the cellular automata model (which
we briefly encountered in Section 2.1 when describing the
Game of Life application)—a discrete dynamical system
that performs computations in a distributed fashion on a
spatially extended grid. A cellular automaton consists of an
array of cells, each of which can be in one of a finite number
of possible states, updated synchronously in discrete time
steps according to a local, identical interaction rule [13]. The
state of a cell at the next time step is determined by the
current states of a surrounding neighborhood of cells.
This transition is usually specified in the form of a rule
table, delineating the cell’s next state for each possible
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neighborhood configuration. The cellular array (grid) is n-
dimensional, where n =1,2,3 is used in practice. Herein,
we consider one-dimensional grids, where each cell can be
in one of two states (0 or 1) and has three neighbors (itself
and the cells to its immediate left and right); the rule table
thus comprises 8 bits since there are eight possible
neighborhood configurations. Nonuniform cellular auto-
mata have also been considered, where the local update rule
need not be identical for all grid cells [13].

Based on the cellular programming evolutionary algorithm
of Sipper [13] we implemented an evolving, one-dimen-
sional, nonuniform cellular automaton. Each of the system’s
56 binary-state cells contains a genome that represents its
rule table. These genomes are initialized at random,
thereupon to be subjected to evolution. The system must
evolve to resolve a global synchronization task: Upon
presentation of a random initial configuration of cellular
states, the cellular automaton must reach, after a bounded
number of time steps, a configuration whereupon the states
of the cells oscillate between all 0s and all 1s on successive
time steps (this may be compared to a swarm of fireflies that
evolves over time to flash on and off in unison). Due to the
local connectivity of the system, this global behavior—-
involving the entire grid—comprises a difficult task. None-
theless, applying the evolutionary process of [13], the
system evolves (i.e.,, the genomes change) such that the
task is solved [12]. The machine is depicted in Fig. 3.

Hardware description. Firefly comprises 56 cells. The
binary state of a cell is stored in a D-type flip-flop whose
next state is determined either randomly, enabling the

New counter

presentation of random initial configurations, or by the
cell’s rule table, in accordance with the current neighbor-
hood of states. Each bit of the rule’s bit string is stored in a
D-type flip-flop whose inputs are channeled through a set
of multiplexors according to the current operational phase
of the system:

1. During the initialization phase of the evolutionary
algorithm, the (eight) rule bits are loaded with
random values; this is carried out once per evolu-
tionary run.

2. During the execution phase of the cellular auto-
maton, the rule bits remain unchanged. In this
phase, several random configurations are run by
the system so as to be able to calculate a fitness
value.

3. During the evolutionary phase, the cell’s genome
(which represents its rule table) may evolve via the
application of genetic operators. This is done in a
completely local manner—only the genomes of the
neighboring cells may be consulted.

Performance gains. The Firefly machine exhibits complete
online evolution, all operations being carried out in
hardware with no reference to an external computer. This
demonstrates that evolving ware, evolware, can be con-
structed [12]. Such evolware systems enable enormous
gains in execution speed to be had. The cellular program-
ming algorithm, when run on a high-performance work-
station, executes 60 initial configurations per second (as
noted, random configurations are constantly presented to
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the cellular automaton during evolution—these are used to
compute the fitness value). In comparison, the Firefly
machine executes 13,000 initial configurations per second
(this is achieved when the machine operates at the current
maximal frequency of 1 MHz; in fact, this can easily be
increased to 6 MHz, thereby attaining 78, 000 configurations
per second).

While the synchronization task is not a real-world
application and was selected to act as a benchmark problem
for our evolware demonstration, Firefly does open up
interesting avenues for future research. Evolware machines
that operate in an autonomous manner can be used in the
field of autonomous mobile robots, as well as for the
construction, in general, of controllers for noisy, changing
environments [11].

3.2 The BioWatch

Type (Objective). Dynamic (Handle changing and/or
incomplete specifications).

Functional description. The BioWatch is one of the
applications designed as part of the Embryonics (embryonic
electronics) project, whose final objective is the develop-
ment of very large scale integrated circuits, capable of self-
repair and self-replication [9], [14]. These two bio-inspired
properties, characteristic of the living world, are achieved
by transposing certain features of cellular organization onto
the two-dimensional world of integrated circuits on silicon.

The BioWatch is an artificial “organism” designed to
count minutes (from 00 to 59) and seconds (from 00 to 59); it
is thus a modulo-3600 counter. This organism is one-
dimensional and comprises four cells aligned in a row, with
identical physical connections and an identical set of
resources. The leftmost cell counts tens of minutes, the
one to its right counts minutes, the following one counts
tens of seconds, and the rightmost cell counts seconds.
Thus, in the BioWatch, each cell performs one of two
specific tasks: a modulo-6 or a modulo-10 count. The
organization is multicellular (as with living beings), with
each cell realizing a unique function, described by a
subprogram called the gene of the cell. We shall show
below that a dynamic reconfiguration of the task executed
by some of the cells occurs during the self-repair process of
this artificial organism.

The genome is the set of all the genes of the BioWatch,
where each gene is a subprogram, characterized by a set of
instructions and by its horizontal coordinate X. Storing the
whole genome in each cell renders the cell universal, i.e.,
capable of realizing any gene of the genome. This is another
bio-inspired property: Each of our (human) cells also
contains the entire genome, though only part of it is used
(e.g., liver cells do not use the same genes as muscle cells).

Depending on its position in the organism, each cell
interprets the genome and extracts and executes the gene
which configures it. The BioWatch thus performs what is
known in biology as cellular differentiation.

Hardware description. The BioWatch is a four-cell, one-
dimensional application of the two-dimensional cellular
automaton defined in the Embryonics project [9], [14]. Each
cell of the automaton is a binary decision machine whose
microprogram represents the genome and each part of the
microprogram is a gene whose execution depends on the
physical position of the cell in the array, ie., on its
coordinates. Ultimately, we plan to implement the auto-
maton using a novel kind of coarse-grained, field-program-
mable gate array, where each basic cell, called MICTREE
(for tree of micro-instructions) has four neighbors (to the
south, west, north, and east). The MICTREE cell holds a 4-
bit state register REG3 : 0 (Fig. 4a). Four 4-bit buses enter
the cell from its neighbors (SI3 : 0 from the south, WI3:0
from the west, NI3 : 0 from the north, and EI3 : 0 from the
east) and, correspondingly, four output buses go out in the
four cardinal directions (SO3 : 0 to the south, WO3 : 0 to the
west, NO3 : 0 to the north, and FEO3 : 0 to the east).

Each MICTREE cell thus has 16 outputs SO3...EOO.
Each of these outputs can be programmed to take on a value
from four possible sources (Fig. 4b). For example, output
NO3 can take on one of 16 values from the following
sources: the four bits REG3 : 0 of register REG, the four bits
S13 : 0 of the south input bus S, the four bits W13 : 0 of the
west input bus W1, and the four bits £I3:0 of the east
input bus EI.

The binary decision machine of the MICTREE cell
executes microprograms written using a set of six instruc-
tions:

if VAR else LABEL,
goto LABEL,

do REG = DATA

do X = DATA,

doY = DAT A, and

do VAROUT = VARIN.

The first three instructions are used to compute the modulo-
6 and modulo-10 counts of the BioWatch application. The
next two are used when computing the X3:0 and Y3:0
coordinates of the cell. The last instruction is used to
program the input/output connections.

While our long-term objective is the design of very large
scale integrated circuits, each MICTREE cell is currently
implemented in an Actel 1020 FPGA circuit and embedded
within a small plastic box intended as a demonstration
module.
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Performance gains. Self-repair of an artificial organism
allows partial reconstruction of the original device in case of
a minor fault. In order to implement a self-repair process in
the BioWatch, as many spare cells are required to the right
of the array as there are faulty cells to repair (four spare
cells in the example of Fig. 5). This process is achieved by
bypassing the faulty cell and shifting to the right all or part
of the original cellular array. The new coordinates, thus
defined, lead to the dynamic reconfiguration of the task
performed by the cell (modulo-6 or modulo-10 count).

Self-replication of an artificial organism allows for the
complete reconstruction of the original device in case of a
major fault. In the BioWatch, the self-replication process
rests on two assumptions: 1) There exists a sufficient
number of spare cells to the right of the array (four in our
example), and 2) the calculation of the coordinates produces
acyce (X=1—-2—-3—-4—1 in Fig. 6). As the same
pattern of coordinates produces the same pattern of genes,
self-replication can be easily accomplished if the micropro-
gram of the genome, associated with the homogeneous
network of cells, produces several instances of the basic
pattern of coordinates.

With a larger number of cells, it becomes possible to add
the extensions needed for a practical use of the BioWatch:
Preserving the current time while self-repair is being
effected and setting and resetting the time. It is also quite
easy to introduce additional functions other than the
counting of seconds, minutes, and hours; for example,
computing the date, keeping track of the day of the week, or
handling leap years.

4 CoONCLUDING REMARKS

Our aim herein has been to demonstrate a number of FPGA
applications that cover a wide range of characteristics. First
and foremost, we made a distinction—which we believe to
be of prime importance—between static and dynamic
configuration strings. The former, aimed at configuring
the processor so as to perform a given function, is loaded
once at the outset, after which it does not change during
execution of the task at hand. A dynamic configuration
string, on the other hand, can continually change.

Static FPGA applications, such as SPYDER and
RENCO, are mainly aimed at attaining the classical goal
in computing: that of improving performance—be it in
terms of speed, resource utilization, or area usage. With
configurable processors slowly but surely inching their
way toward the mainstream of the computing industry,
we will probably be seeing more such static applications
in the near future. Thus, the future may see a merging of
the classical-processor industry with the configurable-
computing industry.

Dynamic devices, such as Firefly and BioWatch, repre-
sent a less conventional approach that may, in fact, be quite
revolutionary (though perhaps not in the immediate
future). With the rise of bio-inspired computing, we expect
to see more hardware devices imbued with properties
usually associated up until now only with living beings:
learning, evolution, self-repair, self-replication, and so forth.
In general, this will result in systems that are more
adaptive—able to undergo modifications according to
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changing circumstances, thus continuing to function within
their dynamic environments. The applications of such
systems are bounded only by our imagination.
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