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Designing an Evolutionary Strategizing Machine for
Game Playing and Beyond

Moshe Sipper, Yaniv Azaria, Ami Hauptman, and Yehonatan Shichel

Abstract— We have recently shown that genetically program-
ming game players, after having imbued the evolutionary process
with human intelligence, produces human-competitive strategies
for three games: backgammon, chess endgames, and robocode
(tank-fight simulation). Evolved game players are able to hold
their own—and often win—against human or human-based
competitors. This paper has a twofold objective: first, to review
our recent results of applying genetic programming in the domain
of games; second, to formulate the merits of genetic programming
in acting as a tool for developing strategies in general, and to
discuss the possible design of a strategizing machine.

Index Terms— Evolutionary algorithms, Genetic program-
ming, Backgammon, Chess, Robocode, Evolving game strategies,
Strategizing.

I. INTRODUCTION

Ever since the dawn of artificial intelligence in the 1950s,
games have been part and parcel of this lively field. In 1957, a
year after the Dartmouth Conference that marked the official
birth of AI, Alex Bernstein designed a program for the IBM
704 that played two amateur games of chess. In 1958, Allen
Newell, J. C. Shaw, and Herbert Simon introduced a more
sophisticated chess program (beaten in thirty-five moves by a
ten-year-old beginner in its last official game played in 1960).
Arthur L. Samuel of IBM spent much of the fifties working
on game-playing AI programs, and by 1961 he had a checkers
program that could play at the master’s level. In 1961 and 1963
Donald Michie described a simple trial-and-error learning
system for learning how to play Tic-Tac-Toe (or Noughts and
Crosses) called MENACE (for Matchbox Educable Noughts
and Crosses Engine). These are but examples of highly popular
games that have been treated by AI researchers since the field’s
inception.

Why study games? This question was answered by Susan
L. Epstein, who wrote:

There are two principal reasons to continue to
do research on games... First, human fascination
with game playing is long-standing and pervasive.
Anthropologists have catalogued popular games in
almost every culture... Games intrigue us because
they address important cognitive functions... The
second reason to continue game-playing research
is that some difficult games remain to be won,
games that people play very well but computers do
not. These games clarify what our current approach
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lacks. They set challenges for us to meet, and they
promise ample rewards. [1]

Studying games may thus advance our knowledge in both
cognition and artificial intelligence, and, last but not least,
games possess a competitive angle which coincides with our
human nature, thus motivating both researcher and student
alike.

Even more strongly, Laird and van Lent proclaimed that,
... interactive computer games are the killer appli-
cation for human-level AI. They are the application
that will soon need human-level AI, and they can
provide the environments for research on the right
kinds of problems that lead to the type of the incre-
mental and integrative research needed to achieve
human-level AI. [2]

In this paper we apply an evolutionary algorithm to the study
and evolution of game-playing strategies. The idea of applying
the biological principle of natural evolution to artificial sys-
tems, introduced more than four decades ago, has seen impres-
sive growth in the past few years [3]. Usually grouped under
the term evolutionary algorithms or evolutionary computation,
we find the domains of genetic algorithms, evolution strategies,
evolutionary programming, and genetic programming [3–10].
Evolutionary algorithms are common nowadays, having been
successfully applied to numerous problems from different
domains, including optimization, automatic programming, cir-
cuit design, machine learning, economics, immune systems,
ecology, and population genetics, to mention but a few. Herein,
we concentrate on the evolutionary methodology of genetic
programming [8], wherein a population of computer programs
is evolved.

This paper has a twofold objective. First, to review our
recent results on the evolution of winning strategies for three
games: backgammon, chess (endgames), and robocode (tank-
fight simulation). This review is written with our second objec-
tive in mind: to formulate the merits of genetic programming
in acting as a tool for developing strategies in general, and
to discuss the possible design of a strategizing machine. The
first objective is attained in Section III, while the second is
addressed in Section IV. First, however, we provide a brief
introduction to genetic programming in the next section.

II. GENETIC PROGRAMMING

Genetic Programming is a sub-class of evolutionary algo-
rithms, introduced by Cramer [11], and transformed into a field
in its own right in large part due to the efforts of John Koza.
In genetic programming we evolve a population of individual
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LISP expressions1, each comprising functions and terminals.
The functions are usually arithmetic and logic operators that
receive a number of arguments as input and compute a result
as output; the terminals are zero-argument functions that serve
both as constants and as sensors, the latter being a special type
of function that queries the domain environment.

With terminals we often use the ERC (Ephemeral Random
Constant) mechanism, as described in Koza [8]. When first
initialized, an ERC node is randomly assigned a constant
value from a given range; this value does not change during
evolution, unless a mutation operator is applied.

The main mechanism behind genetic programming is pre-
cisely that of a generic evolutionary algorithm [3], [4], namely,
the repeated cycling through four operations applied to the en-
tire population: evaluate-select-crossover-mutate. Starting with
an initial population of randomly generated LISP programs,
each individual is evaluated in the domain environment and
assigned a fitness value representing how well the individual
solves the problem at hand. Being randomly generated, the
first-generation individuals usually exhibit poor performance.
However, some individuals are better than others, i.e., (as
in nature) variability exists, and through the mechanism of
natural (or, in our case, artificial) selection, these have a higher
probability of being selected to parent the next generation. The
size of the population is finite and usually constant.

Specifically, first a genetic operator is chosen at random;
then, depending on the operator, one or two individuals are
selected from the current population using a selection opera-
tor, one example of which is tournament selection: Randomly
choose a small subset of individuals, and then select the one
with the best fitness. After the probabilistic selection of better
individuals genetic operators are used to construct the next
generation. The most common operators are:

• Reproduction (unary): Copy one individual to the next
generation with no modifications. The main purpose of
this operator is to preserve a small number of good
individuals.

• Crossover (binary): Randomly select an internal node in
each of the two individuals and swap the sub-trees rooted
at these nodes. An example is shown in Figure 1.

• Mutation (unary): Randomly select a node from the tree,
delete the subtree rooted at that node, and then “grow” a
new sub-tree in its stead. An example is shown in Figure 1
(the growth operator as well as crossover and mutation
are described in detail in Koza [8]).

The generic genetic programming flowchart is shown in
Figure 2. When one wishes to employ genetic programming
one need define the following six desiderata:

1) program architecture,
2) set of terminals,
3) set of functions,
4) fitness measure,
5) control parameters,
6) manner of designating result and terminating run.

1Languages other than LISP have been used, although LISP is still by far
the most popular within the genetic programming domain.

Fig. 1. Genetic operators in genetic programming. LISP programs are
depicted as trees. Crossover (top): Two sub-trees (marked in bold) are selected
from the parents and swapped. Mutation (bottom): A sub-tree (marked in bold)
is selected from the parent individual and removed. A new sub-tree is grown
instead.
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III. BACKGAMMON, CHESS, ROBOCODE: A WHOLLY
TRINITY

In this section we present a summary of our recent work
on attaining (limited) machine intelligence in the domain of
games via the evolutionary methodology of genetic program-
ming. We focused on three games [12–14]:

1) Backgammon. Evolve a full-fledged player for the non-
doubling-cube version of the game [12].

2) Chess (endgames). Evolve a player able to play
endgames [13]. While endgames typically contain but
a few pieces, the problem of evaluation is still hard, as
the pieces are usually free to move all over the board,
resulting in complex game trees—both deep and with
high branching factors. Indeed, in the chess lore much
has been said and written about endgames.

3) Robocode. A simulation-based game in which
robotic tanks fight to destruction in a closed
arena (robocode.alphaworks.ibm.com).
The programmers implement their robots in the Java
programming language, and can test their creations
either by using a graphical environment in which battles
are held, or by submitting them to a central web site
where online tournaments regularly take place. Our
goal here has been to evolve robocode players able to
rank high in the international league [14].

A strategy for a given player in a game is a way of
specifying which choice the player is to make at every point
in the game from the set of allowable choices at that point,
given all the information that is available to the player at that
point [8]. The problem of discovering a strategy for playing a
game can be viewed as one of seeking a computer program.
Depending on the game, the program might take as input the
entire history of past moves or just the current state of the
game. The desired program then produces the next move as
output. For some games one might evolve a complete strategy
that addresses every situation tackled. This proved to work
well with robocode, which is a dynamic game, with relatively
few parameters, and little need for past history.

Another approach (which can probably be traced back to
Samuel [15]) is to couple a current-state evaluator (e.g., board
evaluator) with a next-move generator. One can go on to create
a minimax tree, which consists of all possible moves, counter
moves, counter counter-moves, and so on; for real-life games,
such a tree’s size quickly becomes prohibitive. Deep Blue, the
famous machine chess player, and its offspring Deeper Blue,
rely mainly on brute-force methods to gain an advantage over
the opponent, by traversing as deeply as possible the game
tree [16]. Although these programs have achieved amazing
performance levels, Chomsky [17] has criticized this aspect
of game-playing research as being “about as interesting as
the fact that a bulldozer can lift more than some weight
lifter.” The approach we used herein with backgammon and
chess is to derive a very shallow, one-level tree, and evolve
“smart” evaluation functions. Our artificial player is thus had
by combining an evolved board evaluator with a (relatively
simple) program that generates all next-move boards (such
programs can easily be written for backgammon and chess).

In what follows we describe the definition of the six
items necessary in order to employ genetic programming, as
delineated in the previous section: program architecture, set of
terminals, set of functions, fitness measure, control parameters,
and manner of designating result and terminating run.

A. Program Architecture

Backgammon. The game of backgammon can be observed
to consist of two main stages: the ‘contact’ stage, where the
two players can hit each other, and the ‘race’ stage, where there
is no contact between the two players. During the contact stage
we expect a good strategy to block the opponent’s progress and
minimize the probability of getting hit. On the other hand,
during the race stage, blocks and blots are of no import,
rather, one aims to select moves that lead to the removal of a
maximum number of pieces off the board.

This observation directed us in designing the genomic struc-
ture of individuals in the population. Each individual contains
a contact tree and a race tree. When a board is evaluated,
the program checks whether there is any contact between the
players and then evaluates the tree that is applicable to the
current board state. The terminal set of the contact tree is
richer and contains various general and specific board query
functions. The terminal set of the race tree is much smaller and
contains only terminals that examine the checkers’ positions.
This is because at the race phase, the moves of each player
are mostly independent of the opponent’s status, and thus are
much simpler.

Chess. As most chess players would agree, playing a win-
ning position (e.g., with material advantage) is quite different
than playing a losing position, or an even one. For this reason
each individual contains three trees: an advantage tree, an even
tree, and a disadvantage tree. These trees are used according
to the current status of the board. The disadvantage tree is
smaller because achieving a stalemate and avoiding exchanges
requires less complicated reasoning.

Robocode. A robocode player is written as an event-driven
Java program. A main loop controls the tank activities, which
can be interrupted on various occasions, called events. The
program is limited to four lines of code, as we were aiming for
the HaikuBot category, one of the divisions of the international
league with a four-line code limit.2 The main loop contains
one line of code that directs the robot to start turning the
gun (and the mounted radar) to the right. This insures that
within the first gun cycle, an enemy tank will be spotted by
the radar, triggering a ScannedRobotEvent. Within the code
for this event, three additional lines of code were added, each
controlling a single actuator, and using a single numerical
input that was supplied by a genetic programming-evolved
sub-program. The first line instructs the tank to move to a
distance specified by the first evolved argument. The second
line instructs the tank to turn to an azimuth specified by the
second evolved argument. The third line instructs the gun (and

2Other divisions are: NanoBots—limited to 250 bytes, MicroBots—limited
to 750 bytes, MiniBots—limited to 1500 bytes, Sonnets—limited to 14 lines
of code, and FemtoBots—with code size as small as effectively possible; see
http://robocode.yajags.com/divisions.php.
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Robocode Player’s Code Layout

while (true)
TurnGunRight(INFINITY); //main code loop

...
OnScannedRobot() {

MoveTank(<GP#1>);
TurnTankRight(<GP#2>);
TurnGunRight(<GP#3>);

}

Fig. 3. Robocode player’s code layout (HaikuBot division).

Float-ERC() ERC – random real constant in range [0,5]
Player-Exposed(n) If player has exactly one checker at location n, return 1, else

return 0
Player-Blocked(n) If player has two or more checkers at location n, return 1, else

return 0
Player-Tower(n) If player has h or more checkers at location n (where h ≥ 3),

return h− 2, else return 0
Enemy-Exposed(n) If enemy has exactly one checker at location n, return 1, else

return 0
Enemy-Blocked(n) If enemy has two or more checkers at location n, return 1,

else return 0
Player-Pip() Return player pip-count divided by 167 (initial pip count)
Enemy-Pip() Return enemy pip-count divided by 167 (initial pip count)
Total-Hit-Prob() Return sum of hit probability over all exposed player checkers
Player-Escape() Measure the effectiveness of the enemy’s barrier over its home

positions
Enemy-Escape() Measure the effectiveness of the player’s barrier over its home

positions

(a)

Float-ERC() ERC – random real constant in range [0,5]
Player-Position(n) Return number of checkers at location n

(b)

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
If(B, F, F) If first argument evaluates to a non-zero value, return value of second

argument, else return value of third argument
Greater(F, F) If first argument is greater than second, return 1, else return 0
Smaller(F, F) If first argument is smaller than second, return 1, else return 0
And(B, B) If both arguments evaluate to a non-zero value, return 1, else return

0
Or(B, B) If at least one of the arguments evaluates to a non-zero value, return

1, else return 0
Not(B) If argument evaluates to zero, return 1, else return 0

(c)

Fig. 4. Backgammon representation. a) Terminal set of the contact tree. Note
that zero-argument functions—which serve both as constants and as sensors—
are considered as terminals. b) Terminal set of the race tree. c) Function set
of both trees (B: Boolean, F: Float).

radar) to turn to an azimuth specified by the third evolved
argument (Figure 3).

B. Terminal and Function Sets

The terminal and function sets for the three games are given
in Figures 4 (backgammon), 6 (chess), and 7 (robocode); each
terminal and function is accompanied by a short explanation.
The functions mostly perform simple arithmetic and logic
operations, while the terminals embody the bulk of the imbued
human intelligence.

Backgammon. The terminal set contains three types of
terminals [12] (Figure 4):

1) The Float-ERC function calls upon ERC (Section II) di-
rectly. When created, the terminal is assigned a constant,
real-number value, which becomes the return value of
the terminal.

Fig. 5. Initial backgammon configuration. The White player’s home positions
are labeled 19-24, and the Black player’s home positions are labeled 1-6.

2) The board-position query terminals use the ERC mech-
anism to query a specific location on the board. When
initialized, a value between 0 and 25 is randomly chosen,
where 0 specifies the bar location, 1-24 specify the inner
board locations, and 25 specifies the off-board location
(Figure 5). The term ‘Player’ refers to the contender
whose turn it is, while ‘Enemy’ refers to the opponent.
When a board query terminal is evaluated, it refers to
the board location that is associated with the terminal,
from the player’s point of view.

3) For the last type of terminal we took advantage of one
of genetic programming’s most powerful attributes: The
ability to easily add non-trivial functions that provide
useful information about the domain environment. In our
case, these terminals are functions that provide general
information about the board as a whole, e.g., how far is
the player from winning, and an estimation of the risk
of being hit by the enemy.

Chess. We developed most of our chess terminals by
consulting several high-ranking chess players.3 The terminal
set examines various aspects of the chessboard, and may be
divided into three groups [13] (Figure 6):

1) Float values, created using the ERC mechanism (Sec-
tion II). An ERC is chosen at random to be one of
the following six values ±1 · { 1

2 ,
1
3 ,

1
4} ·MAX (MAX

was empirically set to 1000), and the inverses of these
numbers. This guarantees that when a value is returned
after some group of features has been identified, it will
be distinct enough to engender the outcome.

2) Simple terminals, which analyze relatively simple as-
pects of the board, such as the number of possible moves
for each king, and the number of attacked pieces for
each player. These terminals were derived by breaking
relatively complex aspects of the board into simpler
notions. More complex terminals belong to the next
group (see below). For example, a player should capture

3The highest-ranking player we consulted was Boris Gutkin, ELO 2400,
International Master, and fully qualified chess teacher.



DRAFT IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS – PART C, SIPPER ET AL.: ATTAINING HUMAN-COMPETITIVE GAME-PLAYING... 5

NotMyKingInCheck() Is the player’s king not being checked?
IsOppKingInCheck() Is the opponent’s king being checked?
MyKingDistEdges() The player’s king’s distance form the edges of the

board
OppKingProximityToEdges() The player’s king’s proximity to the edges of the

board
NumMyPiecesNotAttacked() The number of the player’s pieces that are not

attacked
NumOppPiecesAttacked() The number of the opponent’s attacked pieces
ValueMyPiecesAttacking() The material value of the player’s pieces which are

attacking
ValueOppPiecesAttacking() The material value of the opponent’s pieces which

are attacking
IsMyQueenNotAttacked() Is the player’s queen not attacked?
IsOppQueenAttacked() Is the opponent’s queen attacked?
IsMyFork() Is the player creating a fork?
IsOppNotFork() Is the opponent not creating a fork?
NumMovesMyKing() The number of legal moves for the player’s king
NumNotMovesOppKing() The number of illegal moves for the opponent’s king
MyKingProxRook() Proximity of my king and rook(s)
OppKingDistRook() Distance between opponent’s king and rook(s)
MyPiecesSameLine() Are two or more of the player’s pieces protecting

each other?
OppPiecesNotSameLine() Are two or more of the opponent’s pieces protecting

each other?
IsOppKingProtectingPiece() Is the opponent’s king protecting one of his pieces?
IsMyKingProtectingPiece() Is the player’s king protecting one of his pieces?

(a)

EvaluateMaterial() The material value of the board
IsMaterialIncrease() Did the player capture a piece?
IsMate() Is this a mate position?
IsMateInOne() Can the opponent mate the player after this move?
OppPieceCanBeCaptured() Is it possible to capture one of the opponent’s pieces

without retaliation?
MyPieceCannotBeCaptured() Is it not possible to capture one of the player’s pieces

without retaliation?
IsOppKingStuck() Do all legal moves for the opponent’s king advance

it closer to the edges?
IsMyKingNotStuck() Is there a legal move for the player’s king that

advances it away from the edges?
IsOppKingBehindPiece() Is the opponent’s king two or more squares behind

one of his pieces?
IsMyKingNotBehindPiece() Is the player’s king not two or more squares behind

one of my pieces?
IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?
IsMyPieceNotPinned() Are all the player’s pieces not pinned?

(b)

If(B, F, F) If first argument evaluates to a non-zero value, return value of second
argument, else return value of third argument

Smaller(F, F) If first argument is smaller than second, return 1, else return 0
And(B, B) If both arguments evaluate to a non-zero value, return 1, else return

0
And3(B, B, B) If all arguments evaluate to a non-zero value, return 1, else return 0
Or(B, B) If at least one of the arguments evaluates to a non-zero value, return

1, else return 0
Or3(B, B, B) If at least one of the arguments evaluates to a non-zero value, return

1, else return 0
Not(B) If argument evaluates to zero, return 1, else return 0

(c)

Fig. 6. Chess representation. Opp: opponent, My: player. a) Simple terminals,
which analyze relatively simple aspects of the board. b) Complex terminals,
which check upon aspects a human player would. c) Function set (B: Boolean,
F: Float).

his opponent’s piece if it is not sufficiently protected,
meaning that the number of attacking pieces the player
controls is greater than the number of pieces protecting
the opponent’s piece, and the material value of the
defending pieces is equal to or greater than the player’s.
Adjudicating these considerations is not simple, and
therefore a terminal that performs this entire computa-
tional feat by itself belongs to the next group of complex
terminals.
The simple terminals comprising this second group
are derived by refining the logical resolution of the
previous paragraphs’ reasoning: Is an opponent’s piece
attacked? How many of the player’s pieces are attacking
that piece? How many pieces are protecting a given
opponent’s piece? What is the material value of pieces
attacking and defending a given opponent’s piece? All
these questions are embodied as terminals within the
second group. The ability to easily embody such reason-
ing within the genetic programming setup, as functions
and terminals, is a major asset of genetic programming.
Other terminals were also derived in a similar man-
ner (Figure 6). Note that some of the terminals are
inverted—we would like terminals to always return
positive (or true) values, since these values represent a
favorable position. This is why we used, for example,
a terminal evaluating the player’s king’s distance from
the edges of the board (generally a favorable feature
for endgames), while using a terminal evaluating the
proximity of the opponent’s king to the edges (again,
a positive feature).

3) Complex terminals. These are terminals that check the
same aspects of the board a human player would. Some
prominent examples include: OppPieceCanBeCaptured,
considering the capture of a piece; checking if the cur-
rent position is a draw, a mate, or a stalemate (especially
important for non-even boards); checking if there is a
mate in one or two moves (this is the most complex
terminal); the material value of the position; comparing
the material value of the position to the original board—
this is important since it is easier to consider change than
to evaluate the board in an absolute manner.
Since some of these terminals are hard to compute,
and most appear more than once in the individual’s
trees, we used a memoization scheme to save time [18]:
After the first calculation of each terminal, the result is
stored, so that further calls to the same terminal (on the
same board) do not repeat the calculation. Memoization
greatly reduced the evolutionary run-time.

Robocode. We divided the terminals into (again...) three
groups according to their functionality [14] (Figure 7):

1) Game-status indicators: A set of terminals that provide
real-time information on the game status, such as last
enemy azimuth, current tank position, and energy levels.

2) Numerical constants: Two terminals, one providing the
constant 0, the other being an ERC (Ephemeral Random
Constant). This latter terminal is initialized to a random
real numerical value in the range [-1, 1], and does not
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Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the current

player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the current

player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC in the range [-1, 1]
Random() Returns a random real number in the range [-1, 1]
Zero() Returns the constant 0

(a)

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero,

otherwise return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return value of third

argument, else return value of fourth argument
IfPositive(F, F, F) If first argument is positive, return value of second

argument, else return value of third argument
Fire(F) If argument is positive, execute fire command with ar-

gument as firepower and return 1; otherwise, do nothing
and return 0

(b)

Fig. 7. Robocode representation. a) Terminal set. b) Function set (F: Float).

change during evolution.
3) Fire command: This special function is used to curtail

one line of code by not implementing the fire actuator
in a dedicated line.

C. Fitness Measure

Backgammon. We explored two different modes of
learning: using a fixed external opponent as teacher, and
coevolution—letting the individuals play against each other.
As external opponent (and later for benchmark purposes as
well) we used Pubeval, a free, public-domain board evaluation
function written by Tesauro [19]. The program—which plays
well—has become the de facto yardstick used by the growing
community of backgammon-playing program developers. Co-
evolution refers to the simultaneous evolution of individuals—
from different species (populations) or from the same species
(population)—wherein fitness is coupled. Such coupled evo-
lution favors the discovery of complex solutions whenever
complex solutions are required [20]. Simplistically speaking,
one can say that coevolving species can either compete (e.g.,
to obtain exclusivity on a limited resource, or in a gaming
scenario) [21], [22] or cooperate (e.g., to gain access to some
hard-to-attain resource) [23], [24]. We used single-species
competitive coevolution, which proved to be better than the
external-opponent approach.

To evaluate fitness under coevolution we used the Single
Elimination Tournament method [25]: Start with a population
of n individuals, n being a power of two. Then, divide the

TABLE I
CONTROL PARAMETERS.

Backgammon Chess Robocode
Population size 128a 80 256
Generation count 500 150 – 250 100-200b

Selection method tournament tournament tournament
Reproduction probability 0.1 0.35 0
Crossover probability 0.65 0.5 0.95
Mutation probability 0.25 0.15 0.05
aWe first used a single population, later increased to 50 populations when

more extensive computing resources were placed at our disposal.
bWe manually stopped a run when fitness was observed to level off.

individuals into n
2 arbitrary pairs, and let each pair engage in a

relatively short tournament of 50 games. Finally, set the fitness
of the n

2 losers to 1
n . The remaining n

2 winners are divided into
pairs again, engage in tournaments as before, and the losers
are assigned fitness values of 1

n/2 . This process continues until
one champion individual remains. Thus, the more tournaments
an individual “survives,” the higher its fitness.

Chess. We used coevolution, with the fitness of an individ-
ual determined by its success against its peers. Specifically,
we employed the random-2-ways method [26], in which each
individual plays against a fixed number of randomly selected
peers (typically 5). The scoring method was based on the one
used in chess tournaments: victory—1 point, draw— 1

2 point,
loss—0 points. In order to better differentiate our players, we
rewarded 3

4 points for a material advantage (without mating
the opponent). Strategies were first evolved to play one type
of endgame, and then to play multiple endgames. The former
means that the same pieces (one endgame type) were used
as starting board, with their positions changing randomly,
while the latter means that several combinations of pieces
(several endgame types) were used, their placement also being
random. Since random starting positions can sometimes be
uneven (for example, allowing the starting player to attain a
capture position), every starting position was played twice,
each player playing both Black and White. This way a better
starting position could benefit both players and the tournament
was less biased (this stratagem was adopted for both fitness
evaluation and post-evolutionary benchmarking).

Robocode. Again, we experimented with both external op-
ponent and coevolution, with—as opposed to backgammon—
the former proving better. However, not one external
opponent was used to measure performance but three,
these adversaries downloaded from the HaikuBot league
(robocode.yajags.com). The fitness value of an indi-
vidual equals its average fractional score (over three battles).

D. Control Parameters

The control parameters for all three games are summarized
in Table I.

E. Result Designation and Run Termination

Backgammon. Run terminates when generation count is
reached. Every five generations we pitted the four individuals
with the highest fitness in a 1000-game tournament against
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TABLE II
COMPARISON OF BACKGAMMON PLAYERS: WIN PERCENTAGE IN

TOURNAMENT AGAINST PUBEVAL.

Player %Wins
GP-Gammon 62.4
Darwen [27] 52.7
GMARLB-Gammon [28] 51.2
ACT-R-Gammon [29] 45.94
HC-Gammon [30] 40.00

TABLE III
PERCENT OF WINS, ADVANTAGES, AND DRAWS FOR BEST GP-ENDCHESS

PLAYER IN TOURNAMENT AGAINST TWO TOP COMPETITORS.

%Wins %Advs %Draws
Master 6.00 2.00 68.00
CRAFTY 2.00 4.00 72.00

Pubeval, and the individual with the highest score in these
tournaments, over the entire evolutionary run, was declared
best-of-run.

Chess. Run terminates when generation count is reached.
Every 10 generations the best individual was extracted and
pitted in a 150-game tournament against two very strong exter-
nal opponents: 1) A program we wrote (‘Master’) based upon
consultation with several high-ranking chess players (the high-
est being Boris Gutkin, ELO 2400, International Master); 2)
CRAFTY—a world-class chess program, which finished sec-
ond in the 2004 World Computer Speed Chess Championship
(www.cs.biu.ac.il/games/). Speed chess (“blitz”) in-
volves a time-limit per move, which we imposed both on
CRAFTY and on our players. Not only did we thus seek to
evolve good players, but ones that play well and fast.

Robocode. Run terminates when fitness is observed to level
off. Since the game is highly nondeterministic a “lucky”
individual might attain a higher fitness value than better overall
individuals. In order to obtain a more accurate measure for the
evolved players we let each of them do battle for 100 rounds
against 12 different adversaries (one at a time). The results
were used to extract the top player—to be submitted to the
international league.

F. Results

Backgammon. Our top evolved player was able to attain
a win percentage of 62.4% in a tournament against Pubeval,
about 10% higher than the previous top method. Moreover,
several evolved strategies were able to surpass the 60% mark,
and most of them outdid all previous works (see Table II for
comparison).

Chess. Results for our best multiple-endgame evolved strat-
egy are shown in Table III.

Robocode. We submitted our top player to the HaikuBot
division of the international league. At its first tournament
it came in third, with all other programs being human-
written. Our GP-Robocode later came in second of 28 in two
subsequent contests (one is held every week; see Table IV).

IV. DESIGNING A STRATEGIZING MACHINE

In their book, Koza et al. [31] delineate 16 attributes a
system for automatically creating computer programs might
beneficially possess:

1) Starts with problem requirements.
2) Produces tractable and viable solution to problem.
3) Produces an executable computer program.
4) Automatic determination of program size.
5) Code reuse.
6) Parameterized reuse.
7) Internal storage.
8) Iterations, loops, and recursions.
9) The ability to organize chunks of code into hierarchies.

10) Automatic determination of program architecture.
11) Ability to implement a wide range of programming

constructs.
12) Operates in a well-defined manner.
13) Problem-independent, i.e., possesses some degree of

generalization capabilities.
14) Applicable to a wide variety of problems from different

domains.
15) Able to scale well to larger instances of a given problem.
16) Competitive with human-produced results.

Our own work has prompted us to suggest an additional
attribute to this list:

17) Cooperative with humans.
We believe that a major reason for our success in evolving

winning game strategies is genetic programming’s ability to
readily accommodate human expertise in the language of
design. Ronald, Sipper, and Capcarrère defined this latter term
within the framework of their proposed emergence test [32].
The test involves two separate languages—one used to design
a system, the other used to describe observations of its
(putative) emergent behavior. The effect of surprise arising
from the gap between design and observation is at the heart
of the emergence test (for details see [32]). Our languages
of design for the three games possess several functions and
terminals that attest to the presence of a (self-proclaimed)
intelligent designer. These design languages, which give rise
to powerful languages of observation in the form of success-
ful players, were designed not instantaneously—like Athena
springing from Zeus’s head fully grown—but rather through an
incremental, interactive process, whereby man (represented by
the humble authors of this paper) and machine (represented by
man’s university’s computers) worked hand-in-keyboard. To
wit, we began our experimentation with small sets of functions
and terminals, which were revised and added upon through
our examination of evolved players and their performance.
Figure 8 describes three major steps in our hand-in-keyboard
development of the evolutionary chess setup.

We believe that genetic programming represents a viable
means to automatic programming, and perhaps more generally
to machine intelligence, in no small part due to attribute
17: more than many other adaptive-search techniques (e.g.,
genetic algorithms, artificial neural networks, and ant algo-
rithms), genetic programming’s representational affluence and
openness lend it to the ready imbuing of the designer’s own
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TABLE IV
BEST GP-ROBOCODE TAKES SECOND PLACE AT HAIKUBOT LEAGUE ON NEW YEAR’S DAY, 2005

(robocode.yajags.com/20050101/haiku-1v1.html). THE TABLE’S COLUMNS REFLECT VARIOUS ASPECTS OF ROBOTIC BEHAVIOR. Survival:
EACH LIVE ROBOT IS GIVEN 50 POINTS WHENEVER ANOTHER ROBOT DIES (THIS IS TRUE WHERE ROBOTIC TEAMS ARE CONCERNED—IN THE

ONE-ON-ONE SCENARIO WE STUDIED THE WINNER GETS 50 POINTS). Last Survivor Bonus: THE LAST ROBOT ALIVE IS GIVEN AN ADDITIONAL REWARD

OF 10 POINTS FOR EACH DEAD ROBOT (FOR THE ONE-ON-ONE CASE THE WINNER GETS 10 POINTS). Bullet Damage: TOTAL DAMAGE INFLICTED TO

OTHER ROBOTS BY HITTING THEM WITH BULLETS. Bonus (bullet damage): 20% OF THE DAMAGE INFLICTED BY BULLETS, FOR EACH ROBOT KILLED BY

BULLETS. Ram Damage: THE AMOUNT OF DAMAGE INFLICTED TO OTHER ROBOTS BY RAMMING THEM, MULTIPLIED BY TWO. Bonus (ram damage): 30%
OF THE DAMAGE INFLICTED BY RAMMING, FOR EACH ROBOT KILLED BY RAMMING. Total Score: SUM OF ALL OF THE ABOVE . THE FINAL RANK IS

DETERMINED BY THE Rating MEASURE, WHICH REFLECTS THE PERFORMANCE OF THE ROBOT IN COMBAT WITH RANDOMLY CHOSEN ADVERSARIES.

Rank Rating Robot Total Score Survival Last surv. Bullet dmg. Bonus Ram dmg. Bonus 1sts 2nds 3rds
1 543.42 ms.AresHaiku 0.4 33386 14450 2890 13359 2543 137 0 292 30 0
2 219.73 geep.haiku.GPBotC 1.0 34859 9950 1990 17931 2892 1783 304 206 115 0
3 192.13 cx.haiku.Xaxa 1.1 34981 12200 2440 17132 2907 150 143 246 76 0
4 177.08 kawigi.haiku.HaikuTrogdor 1.1 34938 11300 2260 18232 2753 360 26 228 93 0
5 172.38 ms.ChaosHaiku 0.1 33919 9700 1940 18201 2770 1109 190 199 125 0
6 164.79 mz.HaikuGod 1.01 35120 11150 2230 16968 2340 2122 300 268 97 0
7 117.36 pez.femto.WallsPoetHaiku 0.1 33634 9800 1960 17610 2731 1430 92 198 124 0
8 70.48 pez.femto.HaikuPoet 0.2 35972 11650 2330 18424 2994 514 51 240 86 0
9 70.34 cx.haiku.Escape 1.0 31837 10600 2120 16110 2445 510 41 214 108 0
10 45.12 kawigi.femto.FemtoTrogdor 1.0 25986 6900 1380 13907 1805 1769 215 140 182 0
11 41.09 kawigi.haiku.HaikuLinearAimer 1.0 34415 10450 2090 18744 2985 139 0 213 108 0
12 40.40 kawigi.haiku.HaikuCircleBot 1.0 30217 10000 2000 15772 2382 56 0 206 119 0
13 28.63 cx.haiku.MeleeXaxa 1.0 38853 9850 1970 21680 2411 1864 1069 201 123 0
14 17.25 soup.haiku.RammerHK 1.0 46774 7950 1590 22746 2557 10289 1630 168 157 0
15 8.28 kawigi.haiku.HaikuSillyBot 1.2 20264 6500 1300 11133 1282 44 0 138 186 0
16 0.15 cr.OneOnOneHaiku 1.1 37955 7650 1530 20105 2856 5341 464 154 166 0
17 -52.97 cx.haiku.Smoku 1.1 28672 9250 1850 15321 2161 57 22 187 134 0
18 -54.54 ahf.HaikuAndrew .1 19153 7150 1430 9186 1148 178 50 146 177 0
19 -56.70 dummy.haiku.Disoriented 1.0 23957 6500 1300 14560 1419 133 36 135 188 0
20 -63.77 soup.haiku.CutoffHK 1.0 29878 4550 910 17264 1559 5040 546 99 224 0
21 -115.04 kawigi.haiku.HaikuChicken 1.0 24091 6400 1280 14560 1758 86 0 133 190 0
22 -120.51 soup.haiku.MirrorHK 1.0 27971 5700 1140 18524 2071 501 26 125 200 0
23 -154.28 davidalves.net.PhoenixHaiku 1.0 19902 5450 1090 11890 1394 72 0 117 206 0
24 -174.56 klo.haikuBounC 1.0 25039 6050 1210 15618 1591 503 58 123 199 0
25 -193.80 soup.haiku.RandomHK 1.0 19045 2800 560 14477 1059 141 0 59 264 0
26 -208.10 tango.haiku.HaikuTango 1.0 16682 4600 920 9982 875 292 4 96 227 0
27 -303.69 soup.haiku.DodgeHK 1.0 13440 2250 450 9829 482 424 0 46 274 0
28 -410.69 soup.haiku.WallDroidHK 1.0 7959 1950 390 4905 191 490 21 44 277 0

intelligence within the language of design. While artificial-
intelligence (AI) purists may wrinkle their noses at this, taking
the AI-should-emerge-from-scratch stance, we argue that a
more practical path to AI involves man-machine cooperation.
Genetic programming, as evidenced herein, is a forerunning
candidate for the ‘machine’ part.

This brings up a related issue, derived from Koza et al.’s af-
firmation that, “[g]enetic programming now routinely delivers
high-return human-competitive machine intelligence” [33]:
• Human-competitive: Getting machines to produce

human-like results, e.g., a patentable invention, a result
publishable in the scientific literature, or a game strategy
that can hold its own against humans.

• High-return: Defined by Koza et al. as a high “artificial-
to-intelligence ratio” (A/I), namely, the ratio of that which
is delivered by the automated operation of the artificial
method to the amount of intelligence that is supplied by
the human applying the method to a particular system.

• Routine: The successful handling of new problems once
the method has been “jump-started.”

• Machine intelligence: To quote Arthur Samuel, getting
“machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

Our discussion regarding attribute 17 stands in contrast to
the second property above—high-return—which we believe to

be of little import in the domain of human-competitive ma-
chines, and indeed, in the attainment of machine intelligence
in general. Rather than aiming to maximize A/I we believe
the “correct” equation is:

A− I ≥Mε,

where Mε stands for “meaningful epsilon.” When wishing
to attain machine competence in some real-life, hard-to-learn
domain, then—by all means—imbue the machine with as
much I(ntelligence) as possible! After all, if imbuing the I
reduces the problem’s complexity to triviality, then it was
probably not hard to begin with. Conversely, if the problem
is truly hard, then have man and machine work in concert
to push the frontiers of A as far as possible. Thus, it is
not max(A/I) that is of interest but the added value of the
machine’s output: granting the designer “permission” to imbue
the machine with as much I as he can, will it then produce a
∆A = A − I , namely, added intelligence, that is sufficiently
meaningful? Even if this meaningful epsilon (Mε) is small in
(some) absolute terms, its relative value can be huge (e.g., a
chip that can pack 1-2% more transistors, or a game player
that is slightly better—and thus world champion).

One problem with the max(A/I) view is its ignoring the
important distinction between two phases of intelligence (or
knowledge) development: 1) from scratch to a mediocre level,
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—————————————————————————
1. Initial runs.
Terminals: No distinction between “good” and “bad” (i.e., no negative
terminals). Example: IsMyKingInCheck and is IsOppKingInCheck (later the
former will become NotMyKingInCheck). Terminals included:
• Is[My/Opp]PieceAttacked()
• MaterialCount()
• NumMoves[My/Opp]King()
• Is[My/Opp]PieceAttacked()
• Is[My/Opp]PieceProtected()
• Is[My/Opp]QueenAttacked()
• IsMate()
• ERCs in range [-1000,+1000]

Functions:
• Arithmetic: *, +, -
• Logic: And2, And3, And4, Or2, Or3, Or4, Not
• Others: If, <, =, >

2. Later runs. We consulted a chess Master.
Terminals:
• Modified to distinguish between positive and negative, e.g., Not-

MyKingInCheck and MyKingDistEdges
• Added IsMaterialIncrease()
• Added Not[My/Opp]KingMovesDecrease()
• Added Num[My/Opp]PiecesNotAttacked()
• Added IsMyKingProtectingPiece()
• Added IsMyPieceAttackedUnprotected()
• Added IsOppKingBehingPiece()
• Added IsStalemate()

Functions:
• Removed arithmetic functions except for Negate (see [13] for reasons)
• Removed > to simplify computation
• Used IfAdvantageThen[Left Subtree]Else[Right Subtree] to create sep-

arate calculations
3. Final runs. We further consulted a Master, adding complex and simple
terminals.
Terminals:
• Added MateInOne()
• Added IsOppKingStuck()
• Added OppPieceCanBeCaptured()
• IsMaterialIncrease() changed to 100*IsMaterialIncrease()
• Added ValueOf[My/Opp][Attacking/Protecting]Pieces()
• Added Is[My/Opp][Not]Fork()
• Added [My/Opp]King[Dist/Prox]Rook()
• Added [My/Opp]Pieces[Not]SameLine()
• Num[My/Opp]Pieces[Not]Attacked()
• ERCs: Now only six values allowed: ± {0.25, 0.5, 1}*1000

Functions:
• Removed Negate
• Changed program topology to three trees

—————————————————————————

Fig. 8. Three major steps in developing the evolutionary chess setup.

and 2) from mediocre to expert level. Traditional AI is often
better at handling the first phase. Genetic programming allows
the AIer to focus his attention on the second phase, namely,
the attainment of true expertise. When aiming to develop a
winning strategy, be it in games or any other domain, the
genetic-programming practitioner will set his sights at the
mediocre-to-expert phase of development, with the scratch-to-
mediocre handled automatically during the initial generations
of the evolutionary process. Although the designer is “impos-
ing” his own views on the machine, this affords the “pushing”
of the A frontier further out. Note that, at the limit, if I tends
to zero, you may get an extremely high A/I ratio, but with
very little truly meaningful A. Focusing on A− I underscores
the need, or wish, for a high level of intelligence, where even
a small Mε becomes important.

Cognitive psychology recognizes the importance of
schemata, a fundamental notion first defined by Bartlett in his
influential book from 1932 [34]. Schemata are mental patterns
or models that give rise to certain cognitive abilities—complex
unconscious knowledge structures such as symmetry in vision,
plans in a story, and rules. Much of our knowledge is encoded
as schemata, to be neurally activated when their components
are triggered in a certain way (only a certain configuration
of face parts will activate the “face” schema). Genetic pro-
gramming is able to go beyond low-level “bits-and-pieces”
knowledge and handle what may well be schemata analogs.
In our treatment of games we were able to encode meaningful
patterns (schemata) as terminals, then to be combined through
the use of functions. This adds a whole new dimension to the
representations one can design.

As an example, a chess master’s knowledge seems to com-
prise some 100,000 schemata [35], and his advantage over the
machine is the ability to combine these schemata intelligently
in response to a given situation. It is not impossible to imagine
programming 100,000 chess features, in striving to grant your
machine as much I as possible; but finding and applying the
correct combinations is exponential in nature. Here genetic
programming steps in, constantly trying new combinations and
combinations of combinations, beyond that which is possible
to accomplish by (traditional) AI (artificial neural networks,
for example, also traverse the search space but they lack the
ability to integrate deep knowledge in a natural manner).

Genetic programming is able to combine search with pattern
recognition, as is true of humans, with the terminals acting as
pattern recognizers (e.g., safety of king, mate in one). Chess
players, for example, seem to make extensive use of patterns,
or templates [36]. Patterns are a powerful addition to the
toolbox of the machine’s A, enabling it to make use of an
important element of I.

Studying our three special-purpose strategizing machines in
an attempt to generalize upon them, we first note the close
similarity of the function sets, which contain mostly standard
arithmetic and logic functions. A standard function set could
thus be envisaged, including a minimal set of necessary func-
tions. A straightforward proposal would be to define a Turing-
machine equivalent set of operators. While this approach
makes sense from a theoretical point of view, it does not quite
promote the practical design of a strategizing machine. Turing-
machine equivalence can readily be had by using a very small
subset of operators (e.g., a W-machine [37], as used by [38] to
build self-replicating structures, comprises an instruction set of
size six; however, forming useful programs with such a limited
repertoire is very arduous). A balance need be struck between
a sufficiently large function set so as to be useful, though
not too large so as to be unmanageable. Further research is
required as to the exact makeup of this set.

The terminal sets of the three strategizing machines are quite
different, embodying, as they were, most of the human I. The
challenge here is quite different than for the function set since
a standard terminal set is, ipso facto, not attainable. Rather,
the goal here would be to create a proper interface, so that the
designer (user) could easily incorporate his knowledge within
the genetic programming framework.
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To summarize the main points presented in this paper:
• Genetic programming has proven to be an excellent tool

for automatically generating complex game strategies.
• A crucial advantage of genetic programming lies in its

ability to incorporate human intelligence readily.
• As such, genetic programming is an excellent choice

when complex strategies are needed, and human intel-
ligence is there for the imbuing.

In short, GP + I ⇒ HC, i.e., Genetic Programming +
(Human) Intelligence yields Human-Competitiveness.

An early, well-known AI program—Newell’s and Simon’s
General Problem Solver (GPS) [39]—ultimately proved to be
far from general and quite limited in scope. As opposed to
their GPS we do not advocate complete generality and—more
importantly—neither do we promote total machine autonomy.
We believe our approach represents a more practical means
of attaining machine expertise—at least at the current state
of AI—and suggest the replacing of the original GPS with a
more humble one: Genetic Programming Solver.
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