
Studying Parallel Evolutionary Algorithms:

The Cellular Programming Case

Mathieu Capcarr�ere,1 Andrea Tettamanzi,2 Marco Tomassini,3

and Moshe Sipper1

1 Logic Systems Laboratory, Swiss Federal Institute of Technology, 1015 Lausanne,

Switzerland. E-mail: name.surname@di.ep.ch, Web: lslwww.ep.ch.
2 Department of Computer Science, University of Milano, Via Comelico 39/41, 20135

Milano, Italy. E-mail: tettaman@dsi.unimi.it, Web: eolo.usr.dsi.unimi.it/�tettaman/.
3 Institute of Computer Science, University of Lausanne, 1015 Lausanne, Switzerland.

E-mail: Marco.Tomassini@iismail.unil.ch, Web: www-iis.unil.ch.

Abstract. Parallel evolutionary algorithms, studied to some extent over

the past few years, have proven empirically worthwhile|though there

seems to be lacking a better understanding of their workings. In this pa-

per we concentrate on cellular (�ne-grained) models, presenting a number

of statistical measures, both at the genotypic and phenotypic levels. We

demonstrate the application and utility of these measures on a speci�c

example, that of the cellular programming evolutionary algorithm, when

used to evolve solutions to a hard problem in the cellular-automata do-

main, known as synchronization.

1 Introduction

Parallel evolutionary algorithms have been studied to some extent over the past

few years. A basic tenet of such parallel algorithms is that the population has a
spatial structure. A number of models based on this observation have been pro-

posed, the two most important being the island model and the grid model. The

coarse-grained island model features geographically separated subpopulations of

relatively large size. Subpopulations exchange information by having some in-

dividuals migrate from one subpopulation to another with a given frequency

and according to various migrational patterns. This can work to o�set prema-
ture convergence, by periodically reinjecting diversity into otherwise converging

subpopulations. In the �ne-grained grid model individuals are placed on a d-

dimensional grid (where d = 1; 2; 3 is used in practice), one individual per grid

location (this location is often referred to as a cell, and hence the �ne-grained

approach is also known as cellular). Fitness evaluation is done simultaneously

for all individuals, with genetic operators (selection, crossover, mutation) tak-
ing place locally within a small neighborhood. From an implementation point

of view, coarse-grained island models, where the ratio of computation to com-

munication is high, are more adapted to multiprocessor systems or workstation

clusters, whereas �ne-grained cellular models are better suited for massively

parallel machines or specialized hardware. Hybrid models are also possible, e.g.,

one might consider an island model in which each island is structured as a grid

A.E. Eiben et al. (Eds.): PPSN V, LNCS 1498, pp. 573-582, 1998.
 Springer-Verlag Berlin Heidelberg 1998

Draf
t

of locally interacting individuals. For a recent review of parallel evolutionary
algorithms (including several references) the reader is referred to [16].

Though such parallel models have proven empirically worthwhile [1, 4, 7, 8,

10, 15, 17], there seems to be lacking a better understanding of their workings.

Gaining insight into the mechanisms of parallel evolutionary algorithms calls

for the introduction of statistical measures of analysis. This is the underlying

motivation of our paper. Speci�cally, concentrating on cellular models, our ob-
jectives are: (1) to introduce several statistical measures of interest, both at the

genotypic and phenotypic levels, that are useful for analyzing the workings of

�ne-grained parallel evolutionary algorithms, and (2) to demonstrate the appli-

cation and utility of these measures on a speci�c example, that of the cellular

programming evolutionary algorithm [12]. Among the few theoretical works car-

ried out to date, one can cite M�uhlenbein [9], Cant�u-Paz and Goldberg [2], and
Rudolph and Sprave [11]. The latter treated a special case of �ne-grained cellular

algorithms, studying its convergence properties; however, they did not present

statistical measures as done herein.

We begin in Section 2 by describing the cellular programming evolutionary

algorithm and the synchronization task. Section 3 introduces basic formal def-

initions, and various statistical measures used in the analysis of cellular evolu-
tionary algorithms. In Section 4, we apply the statistics of Section 3 to analyze

the cellular programming algorithm when used to evolve solutions to the syn-

chronization problem. Finally, we conclude in Section 5.

2 Evolving Cellular Automata

2.1 Cellular automata

Our evolving machines are based on the cellular automata model. Cellular au-
tomata (CA) are dynamical systems in which space and time are discrete. A

cellular automaton consists of an array of cells, each of which can be in one of

a �nite number of possible states, updated synchronously in discrete time steps,

according to a local, identical interaction rule. The state of a cell at the next time

step is determined by the previous states of a surrounding neighborhood of cells.

This transition is usually speci�ed in the form of a rule table, delineating the
cell's next state for each possible neighborhood con�guration [12]. The cellular

array (grid) is d-dimensional, where d = 1; 2; 3 is used in practice; in this paper

we shall concentrate on d = 1. For such one-dimensional CAs, a cell is connected

to r local neighbors (cells) on either side, where r is a parameter referred to as

the radius (thus, each cell has 2r + 1 neighbors, including itself).

The model investigated in this paper is an extension of the CA model, termed
non-uniform cellular automata [12,14]. Such automata function in the same way

as uniform ones, the only di�erence being in the cellular rules that need not be

identical for all cells. Our main focus is on the evolution of non-uniform CAs to

perform computational tasks, using the cellular programming approach. Thus,

rather than seek a single rule that must be universally applied to all cells in the

grid, each cell is allowed to \choose" its own rule through evolution.

574 M. Capcarrere et al.

2.2 The cellular programming algorithm

Each cell of the non-uniform, r = 1 CA contains an 8-bit genome, which de�nes

its rule table. Our interest is in evolving these initially random genomes so that

the CA as a whole comes to perform a given task. The CA is presented with a
random initial con�guration and runs for a �xed number of time steps. Observing

the �nal steps, cells that exhibit good performance on the task at hand are

assigned a �tness score of 1, while the other cells are assigned a score of 0. This

is repeated for several hundred random con�gurations, thus allowing each cell

to accumulate �tness points. Low-�tness cells then replace their genomes with

the crossed-over and mutated genomes of their higher-�tness neighbors. The
evolutionary process continually alternates between a series of random initial

con�gurations (�tness runs) and the application of genetic operators (in a local

manner). For details see [12,13].

2.3 The synchronization task

The one-dimensional synchronization task was introduced by Das et al. [5], and

studied by Hordijk [6] and Sipper [12,13], the latter using non-uniform CAs. In

this task the CA, given any initial con�guration, must reach a �nal con�guration,

within M time steps, that oscillates between all 0s and all 1s on successive

time steps. The synchronization task comprises a non-trivial computation for a

small-radius CA. Using cellular programming we evolved non-uniform CAs that
successfully solve this task. Fitness was computed by considering the last four

time steps for a given initial con�guration, with each cell in the largest block of

cells oscillating in the correct manner receiving a �tness score of one.

3 Statistical Measures

3.1 Basic de�nitions and notation

In this section we formally de�ne the basic elements used in this paper. A pop-

ulation is a collection of individuals (cells), each represented by a genotype. A
genotype is not necessarily unique|it may occur several times in the population.

In addition, as the population considered has a topology, the spatial distribution

of the genotypes is of interest. Let n be the number of individuals in the system.

Let Ri, 1 � i � n be the genome of the ith individual. Let � be the space of

genotypes and G(�) be the space of all possible populations. Let f() be the

�tness of an individual having genotype 2 � . When the cells are arranged in
a row, as is the case in the example of Section 2, a population can be de�ned as

a vector of n genotypes x = (R1; : : : ; Rn).

For all populations x 2 G(�), an occupancy function nx:� ! N is de�ned,

such that, for all 2 � , nx() is the number of individuals in x sharing the

same genotype , i.e., the occupancy number of in x. The size of population

x, kxk, is de�ned as kxk �
P

2� nx().

575Studying Parallel Evolutionary Algorithms

We can now de�ne a share function qx:� ! [0; 1] giving the fraction qx()
of individuals in x that have genotype , i.e., qx() = nx()=kxk.

Consider the probability space (�; 2� ; �), where 2� is the algebra of the

parts of � and � is any probability measure on � . Let us denote by ~� the

probability of generating a population x 2 G(�) by extracting n genotypes from
� according to measure �. It can be shown that it is su�cient to know either of

the two measures|� (over the genotypes) or ~� (over the populations)|in order

to reconstruct the other.

The �tness function establishes a morphism from genotypes into real num-

bers. If genotypes are distributed over � according to a given probability measure
�, then their �tness will be distributed over the reals according to a probabil-

ity measure � obtained from � by applying the same morphism. This can be

summarized by the following diagram:

�
f
�! IR

o o

� �

(1)

The probability �(v) of a given �tness value v 2 [0;+1) is de�ned as the

probability that an individual extracted from � according to measure � has

�tness v (or, if we think of �tness values as a continuous space, the probability

density of �tness v): for all v 2 [0;+1), �(v) = �(f�1(v)), where f�1(v) � f 2

� : f() = vg.

An evolutionary algorithm can be regarded as a time-discrete stochastic pro-

cess

fXt(!)gt=0;1;2;:::; (2)

having the probability space (
;F ;P) as its base space, (G(�); 2G(�)) as its
state space, and the natural numbers as the set of times, here called generations.

 might be thought of as the set of all the evolutionary trajectories, F is a

�-algebra on
, and P is a probability measure over F .

The transition function of the evolutionary process, in turn based on the

de�nition of the genetic operators, de�nes a sequence of probability measures
over the generations.

Let ~�t denote the probability measure on the state space at time t; for all

populations x 2 G(�),

~�t(x) = Pf! 2
 : Xt(!) = xg: (3)

In the same way, let �t denote the probability measure on space (�; 2�) at time

t; for all 2 � ,

�t() = P [� = j� 2 Xt(!)]: (4)

Similarly, we de�ne the sequence of probability functions �t(�) as follows: for

all v 2 [0;+1) and t 2 N ,

�t(v) = �t(f
�1(v)): (5)

576 M. Capcarrere et al.

In the next two subsections we introduce several statistics pertaining to cellu-
lar evolutionary algorithms: genotypic statistics, which embody aspects related

to the genotypes of individuals in a population, and phenotypic statistics, which

concern properties of individual performance (�tness) for the problem at hand.

Keeping in mind the synchronization problem studied herein, we concentrate on

a one-dimensional spatial structure. We present a more complete set of measures

as well as detailed proofs of the propositions given below in [3].

3.2 Genotypic statistics

One important class of statistics consists of various genotypic diversity indices
(within the population) whose de�nitions are based on the occupancy and share

functions delineated below.

Occupancy and share functions. At any time t 2 N , for all 2 � , nXt
()

is a discrete random variable with binomial distribution

P [nXt
() = k] =

�
n

k

�
�t()

k[1� �t()]
n�k; (6)

thus, E[nXt
()] = n�t() and Var[nXt

()] = n�t()[1� �t()]. The share func-

tion qXt
() is perhaps more interesting, because it is an estimator of the prob-

ability measure �t(); its mean and variance can be calculated from those of
nXt

(), yielding

E[qXt
()] = �t() and Var[qXt

()] =
�t()[1 � �t()]

n
: (7)

Structure. Statistics in this category measure properties of the population

structure, that is, how individuals are spatially distributed.

Frequency of transitions. The frequency of transitions �(x) of a population x of
n individuals (cells) is de�ned as the number of borders between homogeneous

blocks of cells having the same genotype, divided by the number of distinct

couples of adjacent cells. Another way of putting it is that �(x) is the probability

that two adjacent individuals (cells) have di�erent genotypes, i.e., belong to two

di�erent blocks.

Formally, the frequency of transitions �(x) for a one-dimensional grid struc-

ture can be expressed as

�(x) =
1

n

nX
i=1

�
Ri 6= R(imodn)+1

�
; (8)

where [P] denotes the indicator function of proposition P .

577Studying Parallel Evolutionary Algorithms

Diversity. There are a number of concievable ways to measure genotypic diver-
sity, two of which we de�ne below: population entropy, and the probability that

two individuals in the population have di�erent genotypes.

Entropy. The entropy of a population x of size n is de�ned as

H(x) =
X
2�

qx() log
1

qx()
: (9)

Entropy takes on values in the interval [0; log n] and attains its maximum,

H(x) = log n, when x comprises n di�erent genotypes.

Diversity indices. The probability that two individuals randomly chosen from x

have di�erent genotypes is denoted by D(x).

Index D(Xt) is an estimator of quantity

X
2�

�t() (1� �t()) = 1�
X
2�

�t()
2; (10)

which relates to the \breadth" of measure �t.

Proposition 1 Let x be a population of n individuals with genotypes in � . Then,

D(x) =
n

n� 1

X
2�

qx()(1 � qx()): (11)

Proof. See [3].

We observe that for all populations x 2 G(�),

D(x) �
H(x)

log n
: (12)

One can observe that D(x) rises more steeply than entropy as diversity increases.

An interesting relationship between D and � is given by the following propo-
sition.

Proposition 2 Given a random one-dimensional linear population x of size n,

the expected frequency of transitions will be given by

E[�(x)] = D(x): (13)

Proof. See [3].

3.3 Phenotypic statistics

Phenotypic statistics deal with properties of phenotypes, which means, primarily,

�tness. Associated with a population x of individuals, there is a �tness distribu-

tion. We will denote by �x its (discrete) probability function.

578 M. Capcarrere et al.

Performance. The performance of population x is de�ned as its average �tness,
or the expected �tness of an individual randomly extracted from x, E[�x].

Diversity. The most straightforward measure of phenotypic diversity of a pop-

ulation x is the variance of its �tness distribution, �2(x) = Var[�x].

Structure. Statistics in this category measure how �tness is spatially dis-

tributed across the individuals in a population.

Ruggedness. Ruggedness measures the dependency of an individual's �tness on
its neighbors' �tnesses. For a one-dimensional population, x, of size n, x 2 G(�),

ruggedness can be de�ned as follows:

�2(x) =
1

n

nX
i=1

�
1�

1 + 2f(Ri)

1 + f(R(imodn)+1) + f(R(i�2modn)+1)

�2
: (14)

Notice that �2(x) is independent of the �tness magnitude in population x,

i.e., of performance E[�x].

4 Results and Analysis

Using the di�erent measures presented in the previous section we analyzed the

processes taking place during the execution of the cellular programming algo-

rithm presented in Section 2. This was carried out for the synchronization task

for CAs of size 150. The results are based on 75 runs. (Additional tasks are
studied in [3].)

The evolutionary dynamics of the synchronization task were found to exhibit

at most three �tness phases: a low-�tness phase, followed by a rapid-increase
phase, ending with a high-�tness phase. Note that for this task a successful run

is considered to be one where a perfect �tness value of 1.0 is attained. The evo-

lutionary runs can be classi�ed into four distinct classes, two of which represent

successful runs (Figures 1a and 1b), the other two representing unsuccessful runs

(Figures 1c and 1d). The classi�cation is based on the number of phases exhib-

ited during evolution. We �rst present some general trends, followed by detailed
results of our experiments according to these three �tness phases.

In all runs the entropy (H) falls from a high of approximately 0.8 to a low

of approximately 0.7 within the �rst 20 generations, and from then on generally

tends to decline. Though this decline is not monotonic, the entropy always ends
up below 0.4. This fall in entropy is due to two factors. First, we observed in

all runs a steep drop in the transition frequency (�) in the �rst few generations,

followed by an almost continuous drop in the subsequent generations. Though

it may be intuitive that, given the possibility of rule replication between neigh-

boring cells after each generation, blocks will tend to form, our measures now

provide us with quantitative evidence. We noted that the transition frequency

579Studying Parallel Evolutionary Algorithms

(�) progresses towards an oscillatory state about values below 0.3. The second
factor involved in the lower entropy is the number of rules. One can see directly

that low � implies few rules. This is corroborated by the diversity (D) measure's

decreasing trend.

For the the task studied herein the objective is to reach a high average �tness

over the entire population, rather than consider just the highest-�tness individual

cell. Thus, intuitively we can expect that the phenotypic variance will tend to

be minimized, and we can factually check that both the �tness variance (�2)
and ruggedness (�2) are always very low towards the end of an evolutionary run.

Usually the evolved CA had less than 10 di�erent rules out of the 256 possible

ones. We now detail the �tness phases.

(b)(a)

(c) (d)

Phase I II I II III

Phase I I II III

generationsgenerations

generations generations

fi
tn

es
s

fi
tn

es
s

fi
tn

es
s

fi
tn

es
s

Fig. 1. The evolutionary runs for the synchronization task can be classi�ed into four

distinct classes, based on the three observed �tness phases: phase I (low �tness), phase

II (rapid �tness increase), and phase III (high �tness). (a) Successful run, exhibiting

but the �rst two phases. The solution is found at the end of phase II. (b) Successful

run, exhibiting all three phases. The solution is found at the end of phase III. (c)

Unsuccessful run, \stuck" in phase I. (d) Unsuccessful run, exhibiting all three phases.

Phase III does not give rise to a perfect solution.

Phase I: Low �tness. This phase is characterized by an average �tness of 0.5,

with an extremely low �tness variance. However, while exhibiting phenotypic
(�tness) \calmness," this phase is marked by high underlying genotypic ac-

tivity: the entropy (H) steadily decreases, and the number of rules strongly

diminishes. An unsuccessful type-c run (Figure 1c) results from \genotypic

failure" in this phase. To explain this, let us �rst note that for the syn-

chronization task, only rules with neighborhoods 111 mapped to 0 and 000

mapped to 1 may appear in a successful solution. This is the \good" quad-

580 M. Capcarrere et al.

rant of the rule space, whereas the \bad" quadrant is the one that comprises
rules mapping 111 to 1 and 000 to 0. The low �tness variance, indicating a

weak selection pressure, may explain why, in type-c runs, the grid evolves

towards the bad quadrant. Only the mutation operator can possibly hoist

the evolutionary process out of this trap. However, it is usually insu�cient

in itself, at least with the mutation rate used herein (0.001). Thus, in such

a case the algorithm is stuck in a local minimum, and �tness never ascends
beyond 0.53 (Figure 1c).

Phase II: Rapid �tness increase. A rapid increase of �tness characterizes
this phase, its onset marked by the attainment of a 0.54 �tness value (at

least). This comes about when a su�ciently large block of rules from the

good quadrant emerges through the evolutionary process. In a relatively

short time after this emergence (less than 100 generations), evolved rules

over the entire grid all end up in the good quadrant of the rule space; this is

coupled with a high �tness variance (�2). This variance then drops sharply,
while the average �tness steadily increases, reaching a value of 0.8 at the

end of this phase. Another characteristic of this phase is the sharp drop

in entropy. On certain runs a perfect CA was found directly at the end of

this stage, thus bringing the evolutionary process to a successful conclusion

(Figure 1a).

Phase III: High �tness. The transition from phase II to phase III is not clear

cut, but we observed that when a �tness of approximately 0.82 is reached,

the �tness average then begins to oscillate between 0.65 and 0.99. During
this phase the �tness variance also oscillates between approximately 0 and

0.3. While low, this variance is still higher than that of phase I. Whereas

in phases I and II we observed a clear decreasing trend for entropy (H), in

this phase entropy exhibits an oscillatory pattern between values of approx-

imately 0.3 and 0.5. We conclude that when order (low entropy) is too high,

disorder is reinjected into the evolutionary process, while remaining in the
good quadrant of the rule space; hence the oscillatory behavior. On certain

runs it took several hundred generations in this phase to evolve a perfect

CA|this is a success of type b (Figure 1b). Finally, on other runs no per-

fect CA was found, though phase III was reached and very high �tness was

attained. This is a type-d unsuccessful run (Figure 1d) which does not di�er

signi�cantly from type-b successful runs.

5 Concluding Remarks

In this paper we introduced several statistical measures of interest, both at the

genotypic and phenotypic levels, that are useful for analyzing the workings of

�ne-grained parallel evolutionary algorithms in general. We then demonstrated

their application and utility on a speci�c example, that of the cellular program-

ming evolutionary algorithm, which we employed to evolve solutions to the syn-
chronization problem.

We observed the notable di�erence between activity at the genotypic level

581Studying Parallel Evolutionary Algorithms

and at the phenotypic level, which we were able to study quantitatively. The
synchronization task was seen to undergo (at most) three �tness phases, the

nature of which (or the absence of which) served to distinguish between four

types of evolutionary runs.

Parallel evolutionary algorithms have been receiving increased attention in

recent years. Gaining a better understanding of their workings and of their un-

derlying mechanisms thus presents an important research challenge. We hope
that the work presented herein represents a small step in this direction.

References

1. D. Andre and J. R. Koza. Parallel genetic programming: A scalable implementation using the
transputer network architecture. In P. Angeline and K. Kinnear, editors, Advances in Genetic

Programming 2, Cambridge, MA, 1996. The MIT Press.
2. E. Cant�u-Paz and D. E. Goldberg. Modeling idealized bounding cases of parallel genetic algo-

rithms. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages
353{361, San Francisco, 1997. Morgan Kaufmann Publishers.

3. M. Capcarr�ere, A. Tettamanzi, M. Tomassini, and M. Sipper. A statistical study of a class of
cellular evolutionary algorithms. Submitted, 1998.

4. J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Punctuated equilibria: A paral-
lel genetic algorithm. In J. J. Grefenstette, editor, Proceedings of the Second International

Conference on Genetic Algorithms, page 148. Lawrence Erlbaum Associates, 1987.
5. R. Das, J. P. Crutch�eld, M. Mitchell, and J. E. Hanson. Evolving globally synchronized cel-

lular automata. In L. J. Eshelman, editor, Proceedings of the Sixth International Conference

on Genetic Algorithms, pages 336{343, San Francisco, CA, 1995. Morgan Kaufmann.
6. W. Hordijk. The structure of the synchonizing-ca landscape. Technical Report 96-10-078, Santa

Fe Institute, Santa Fe, NM (USA), 1996.
7. A. Loraschi, A. Tettamanzi, M. Tomassini, and P. Verda. Distributed genetic algorithms with

an application to portfolio selection problems. In Proceedings of the International Conference

on Arti�cial Neural Networks and Genetic Algorithms, pages 384{387. Springer-Verlag, New-
York, 1995.

8. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D. Scha�er,
editor, Proceedings of the Third International Conference on Genetic Algorithms, page 428.
Morgan Kaufmann, 1989.

9. H. M�uhlenbein. Evolution in time and space{the parallel genetic algorithm. In Gregory J. E.
Rawlins, editor, Foundations Of Genetic Algorithms I. Morgann Kaufmann Publishers, 1991.

10. M. Oussaidene, B. Chopard, O. Pictet, and M. Tomassini. Parallel genetic programming and
its application to trading model induction. Parallel Computing, 23:1183{1198, 1997.

11. G. Rudolph and J. Sprave. A cellular genetic algorithm with self-adjusting acceptance thresh-
old. In First IEE/IEEE International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications, pages 365{372, London, 1995. IEE.
12. M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming Approach.

Springer-Verlag, Heidelberg, 1997.
13. M. Sipper. The evolution of parallel cellular machines: Toward evolware. BioSystems, 42:29{43,

1997.
14. M. Sipper. Computing with cellular automata: Three cases for nonuniformity. Physical Review

E, 57(3):3589{3592, March 1998.
15. T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed genetic algo-

rithms. In H.-P. Schwefel and R. M�anner, editors, Parallel Problem Solving from Nature, vol-
ume 496 of Lecture Notes in Computer Science, page 176, Heidelberg, 1991. Springer-Verlag.

16. A. Tettamanzi and M. Tomassini. Evolutionary algorithms and their applications. In D. Mange
and M. Tomassini, editors, Bio-Inspired Computing Machines: Toward Novel Computational

Architectures, pages 59{98. Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1998.

17. M. Tomassini. The parallel genetic cellular automata: Application to global function optimiza-
tion. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Proceedings of the Inter-

national Conference on Arti�cial Neural Networks and Genetic Algorithms, pages 385{391.
Springer-Verlag, 1993.

This article was processed using the LATEX macro package with LLNCS style

582 M. Capcarrere et al.

