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Abstract

We describe the evolution—via genetic programming—of control systems for real-
world, sumo-fighting robots—sumobots, in adherence with the Robothon rules: Two
robots face each other within a circular arena, the objective of each being to push the
other outside the arena boundaries. Our robots are minimally equipped with sensors and
actuators, the intent being to seek out good fighters with this restricted platform, in a
limited amount of time. We describe four sets of experiments—of gradually increasing
difficulty—which also test a number of evolutionary methods: single-population vs.
coevolution, static fitness vs. dynamic fitness, and real vs. dummy opponents.

1 Introduction

Evolutionary robotics is a field that deals with the use of evolutionary techniques to evolve

autonomous or semi-autonomous robots, both in simulation and in the real world [2, 3,

6, 15, 19, 20, 24]. Often, the control system of an evolving robot is an artificial neural

network, which receives one or more inputs from the robot’s sensors and then outputs

actuator controls. The network’s topology—either fixed or evolving [25]—along with the

learned synaptic weights and neuronal thresholds, represents the robot’s “intelligence.”

Understanding such an intelligence is usually hard, due to the neural network’s black-box

nature.

In the present work we shall represent the robotic control system by a program, and

evolve this program via genetic programming [12]. Genetic programming has the advantage

of inherently evolving structure. Moreover, the evolved programs are usually more well

structured than evolved neural networks. In genetic programming one starts with an initial

set of general- and domain-specific features, and then lets evolution evolve the structure of

the calculation (in our case, a sumo-fighter strategy). In addition, genetic programming may

produce programs that can be simplified and understood (for example, Sipper et al. have

recently evolved chess endgame players [10, 22], whose cognition they are now endeavoring

to analyze).

This paper details the evolution—via genetic programming—of control systems for real-

world, sumo-fighting robots—sumobots, in adherence with the Robothon rules

(www.robothon.org): Two robots face each other within a dohyo (circular arena), the
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objective of each being to push the other outside the dohyo boundaries. As stated, genetic

programming has the distinct advantage of evolving the crucially important structure of the

control program. Our robots are minimally equipped with sensors and actuators, our intent

being to seek out good fighters with this restricted platform (which can neither pull nor

lift), in reasonable evolutionary time (a number of days). As for the latter time constraint,

Ebner, e.g., experimented with real mobile robots, evolving corridor-following control ar-

chitectures using genetic programming [6]. Due to the length of the experiment (2 months)

on a real robot Ebner was able to perform only a single run.

We seek to answer: Can genetic programming be used to find a sumobot strategy given

the limited amount of time available, using two real robots fighting each other? A successful

result would evolve control programs that can push a mobile robot out of the dohyo. Evolv-

ing fighting strategies for real robots provides the field of evolutionary robotics with the

opportunity to showcase how evolutionary computation discovers real-world robotic behav-

iors for this hard task. We also wish to demonstrate the suitability of genetic programming

as a tool in the field of evolutionary robotics. Toward this end we perform four sets of

experiments of increasing difficulty, which also test a number of evolutionary methods:

single-population vs. coevolution, static fitness vs. dynamic fitness, and real vs. dummy

opponents.

In the next section we present previous work on machine-learning approaches relevant

to our sumobot research. In Section 3 we delineate the evolutionary setup. Section 4

details experimental results, followed by a discussion in Section 5. Section 6 concludes and

describes future work.

2 Sumobots

Koza demonstrated early on the effectiveness of genetic programming in simulated evo-

lutionary robotics [12]. In the intervening years evolution has been shown to produce a

plethora of results both in simulated and real-world robotics [20]. As stressed by Nolfi and

Floreano [20], an important aspect of such research is the emergence of complex abilities

from a process of autonomous interaction between an agent and its environment. In our

work we employed genetic programming to evolve and coevolve sumobots using two real

robots, which interact in a dohyo.

An event that showcases the capabilities and technological developments in robotics in

general and sumobot fighting in particular is the National Robothon Event (www.robothon.org),

which takes place in Seattle once a year. There are two sumo-fight categories: Mini Sumo

and 3Kg Sumo. Our own work aims at the 3Kg category and we thus made every effort to

adhere to the rules of this division.

Sims [21] described a system that generates three-dimensional virtual creatures that

exhibit competitive strategies in a physical simulated world. Although this work involved

entirely simulated creatures (as opposed to our work involving real robots), its importance

lies in the successful coevolution of one-on-one game strategies of robot-like creatures. Later

on, Floreano and Mondada evolved neural networks [7] able to navigate “home,” using real

robots (Khepera) in real time, rather than simulation. Floreano and Nolfi used simulations
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of Khepera robots [8] to show that competing coevolutionary systems can be of great interest

in evolutionary robotics.

Liu and Zhang [14] presented a multi-phase genetic programming approach for sumobot

and compared it with a standard GP approach. The task was to evolve a control program

that pushes a dummy stationary opponent of various shapes, weights, and postures. In the

standard GP approach all the functions are available to the evolutionary process throughout.

In the multi-phase approach, early phases involved general functions (e.g., move forward),

with more specific functions introduced in later phases (e.g., fast, moderate or slow forward

movement).

Liu’s and Zhang’s sumobots were evaluated first in simulation and the best ones evolved

at each generation were then executed and validated on a physical robot, as opposed to our

experiments where all robots were tested in the real world. Their multi-phase approach was

shown to yield good results, faster than the conventional genetic programming approach,

namely, it took GP about 20% more generations than the multi-phase GP approach to

evolve a program that achieved the desired result. Our own GP system made all functions

available throughout the evolutionary process but used the phase concept of introducing

more demanding conditions at later generations, as will be described below.

The robot we used is extremely simple: It has two wheels, whose motors can be controlled

separately, and no onboard sensors (Figure 1a). This robot is used by our mechanical

engineering students and has the advantage of being very sturdy, thus affording itself to the

bumping inherent in sumobot fights.

At the beginning of a fight the robots face each other as shown in Figure 1b. As

the robots have no onboard sensors, sensation is performed via an overhead camera—

one per robot, each connected to its own computer. Each camera relays the battlefield

to its computer, which runs a sumobot control program. The control program decides

upon the actuation commands to the wheel motors, which are then transmitted to the

robot (Figure 1c). It may be argued that the use of overhead cameras provides the robot

with global information about the arena, which is not realistic for autonomous robots with

onboard sensors. We counterargue by noting further ahead that we limit the robot’s use of

visual data.

3 Evolving Sumobots using Genetic Programming

We used Koza-style genetic programming [12] to evolve sumobot control systems in the real

world—with no simulation phase whatsoever. This has the obvious advantage of exhibiting

no simulation-to-real-world transference problem [3, 6, 15]. The downside is the lengthy

times involved in real-world evolutionary experiments. We were able to afford a relatively

low number of runs—about ten evolutionary runs per experimental setup, each run taking

on average 35 hours. This section delineates our evolutionary setup.

3.1 Functions and terminals

Our evolved individuals are expressions constructed from functions and terminals, detailed

in Table 1. The terminals include the location of the two robots (Sumo1 and Sumo2),
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(a) (b)

(c)

Figure 1: Sumobots: a) The robot. b) Dohyo (140cm in diameter) in initial setup, with two
robots facing each other. The ‘<’ symbols indicate the initial positions and orientations
of the robots. c) System setup: Two overhead web cameras, each connected to its own
computer. Each computer transmits via its remote controller the maneuver commands to
the respective sumobot, which then acts accordingly.
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Table 1: GP-Sumo: Functions and terminals.

Terminals

x1 x position of Sumo1

y1 y position of Sumo1

x2 x position of Sumo2

y2 y position of Sumo2

ERC1 an ERC in the range [-15,15]

ERC2 an ERC in the range [-15,15]

α angle between direction Sumo1 is facing and di-
rection of Sumo2

Arithmetic functions

plus(x, y) x+ y

minus(x, y) x− y
mul(x, y) x · y
sdiv(x, y) return x/y if y is nonzero; otherwise return 1

abs(x) absolute value of x

negative(x) −x
Motor functions

moveBW (x) Move both wheels in the same direction at speed
x (x > 0 means forward movement, otherwise
backward)

moveRW (x) Move right wheel at speed x

moveLW (x) Move left wheel at speed x

spin(x) Move both wheels in opposite directions at speed
x

moveFree 2(x, y) Move left wheel at speed x and right wheel at
speed y

Logical functions

isl(x, y){block1} else {block2} if x < y execute block1; otherwise, execute
block2

return{func1} return receives a motor function and returns
control to main program

difference angle of Sumo1 vis-a-vis Sumo2, and two ephemeral random constants [12] (ERC1,

ERC2). The terminal α is the angle between the direction Sumo1 is facing and the direction

where Sumo2 is found. ERCs are randomly chosen integer constants in the range [-15,15]

(maximal speed values of wheels). This value, once initialized, can change only through

application of MutateERC.

The functions belong to three categories (Table 1):

• Standard arithmetic functions.

• Motor functions, which set the velocities of the robot’s two wheels.

• Standard logical functions.

An example of a random robotic control program from the initial population is given in
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if(isl( x1 , sdiv( y1 , 2 ) ) ){
return spin( abs( α ) );

}
else {

if(isl( y1 , y2 ) ) {
return moveBW( 5 );

}
else { return moveRW( 0 ); }

}
(a)

isl

spin

y1

sdiv

2 abs moveBW

islx1

y1 y2 moveRW

5 0�

(b)

Figure 2: Sample random control program from generation zero: a) C language. b) Tree
format.

Figure 2. The root level isl function has four sub-branches: one terminal, one arithmetic

function, one motor function, and one logical function. The code can be read as follows:

if Sumo1’s x position is less than the result of dividing Sumo1’s y position by 2, then spin

the robot at a speed equal to the absolute value of the angle by which Sumo1 has drifted

from Sumo2; otherwise, perform another check: if Sumo1’s y position is less than Sumo2’s

y position then move forward at a speed of 5, else rotate right at speed 0, i.e., stand still.

This program yields a behavior that depends on the robots’ location.

We used strongly typed genetic programming [18] (STGP), which allows to add data

types and data-type constraints to the programs, so as to avoid the formation of illegal

programs under genetic operators. For example, moveBW(x) has an argument x which

cannot be replaced by spin(x) (i.e., moveBW(spin(x)) is not a valid expression). We thus

need to ensure the safe combination of functions and terminals in the initial population

of programs, and when crossover and mutation take place. STGP does just this: By pre-

checking the type of the requested input and choosing it from the correct pool of functions

and/or terminals we make sure that no type error will emerge from a genetic operation.

Our control programs conform to the following STGP rules:

1. An arithmetic function accepts number type, meaning arguments that are either arith-

metic functions or terminals, and its return type is number.
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2. A motor function accepts number type arguments and its return type is motor function.

3. The isl logical function accepts predicates that are number type arguments, and ac-

cepts logical functions type in the block1 and block2 sections. It returns a boolean

value.

4. The return logical function accepts as argument a motor function.

3.2 Fitness function

To drive evolution to find good sumobot fighters we followed the Robothon basic rules

(www.robothon.org). A robot is given three tries (fights) to push the other robot out of the

ring. Points are given for exhibiting aggressive gestures during the fight (e.g., approaching

the opponent, fast maneuvering, etc’—see full details below). A bonus is given to a robot

that manages to push its opponent outside the dohyo. Since we are dealing with evolution

and no behavior should be taken for granted we also reward players for not leaving the

dohyo during the fight.

We used coevolution with two independently evolving populations [1,4,9,11], each con-

taining programs that controlled one of the two robots. This affords better diversity during

evolution, since each population contains a separate genetic pool. We deemed that two such

pools were better than one (as in single-population algorithms). A positive side-effect of our

coevolutionary setup is that every evolutionary run yields, in effect, two (usually differently

behaving) best robots.

We began our experiments with a simple fitness function, which rewards the sumobot

for: 1) approaching the target, 2) pushing it, and 3) staying inside the dohyo. This function

has the advantage of being straightforward and simple, but the unfortunate disadvantage

of producing bad results; specifically, the sumobots evolved to move extremely slowly, i.e.,

they were much too overcautious for any serious fighting to occur. Further experimentation

ultimately resulted in the more complex, yet viable, fitness function, given below:

w1 · radius + w2 · sticky + w3 · closer + w4 · speed +

w5 · push + w6 · bonuspush + w7 · explore + bonustay.

The fitness function is calculated after the game ends using the two robot-route arrays of

robot position triplets. A position triplet, {xti, yti , θti}, represents the location and orientation

of Sumoi (i = {1, 2}) at time t. The weights w1 . . . w7, empirically derived, allowed us to

finetune the requirements of the evolved individuals. We tested different weight values,

most of which yielded interesting results.

As for the fitness components: Let du,vi,j be the distance between robot i at time u and

robot j at time v, computed as:

du,vi,j =
√

(xui − xvj )2 + (yui − yvj )2.

The arena radius is 170 image pixels (70 cm in reality), and all distance units are in

pixels.
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Let T be the number of iterations—game ticks—an evolved robot executes in a single

fight (basically, a measure of fight time). Robot i’s fitness components are computed as

follows:

• radius rewards distance between starting position to robot’s farthest location during

a fight (larger distance is better):

radius = max
t=2..T

{dt,1i,i }.

• sticky rewards spending time close to the target, namely, the other robot, denoted j:

sticky =
1

T

T∑

t=1

isS(t),

where isS(t) = 1 if dt,ti,j < δ, and isS(t) = 0 otherwise. δ is a pre-set threshold

distance.

• closer rewards approaching the target in leaps larger than δ:

closer =
1

T

T∑

t=2

isC(t),

where isC(t) = 1 if dt−1,t
i,j − dt,ti,j > δ, otherwise isC(t) = 0.

• speed rewards speed,

speed =
1

T

T∑

t=2

dt,t−1
i,i .

• push rewards pushing the opponent:

push =
1

T

T∑

t=2

{isS(t) = isC(t) = isD(t) = 1},

where D is the dohyo’s center, and isD(t) = 1 if dt,1j,D > dt−1,1
j,D , which indicates that the

opponent robot retreats from the dohyo’s center; otherwise isD(t) = 0. dt,1j,D denotes

the distance of robot j at time t from the dohyo’s center. In the push equation, 1 is

added to the sum when the condition is true, 0 otherwise.

• explore rewards exploring the dohyo (more area explored is better). This component

returns the number of robot positions that are distant more than δ pixels from each

other.

explore = |E|,

where we initialize E = {1} and add to this group as follows:

E = {t : dt,τi,i > δ, t = 2..T, ∀ τ ∈ E}.
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Table 2: Summary of the four batches of experiments carried out.

Batch Fitness Opponent Evolution Description
A static dummy single population evolve a robot to successfully

push a dummy
B static real coevolution coevolve sumobots starting from

Batch A’s results
C dynamic real coevolution coevolve sumobots with fitness

function changing during evolu-
tion

D static fixed oppo-
nents

single population evolve sumobots pitted against
pre-designed opponents

• bonustay is a fixed bonus added for staying in the dohyo:

bonustay = 20.

• bonuspush rewards faster wining programs. It is calculated by dividing the fixed 40

seconds allocated for a game by the time the game actually lasted.

speed =
40

T
.

We began our experimentation with a simple scenario that allows evolution to “ease

into” the problem, and then gradually increased the task’s complexity. In toto, we ran

four different sets of experiments. In the first set (Batch A) the robots evolved to push an

immobile, “dummy” robot out of the dohyo. Only one population was evolved here. The

second batch of experiments (Batch B) used the evolved population of the first batch as an

initial population for coevolving robots that push a mobile robot (i.e., a real fight). Both

populations in this coevolutionary scenario used robots from the Batch-A experiment. The

third set of experiments (Batch C) used a dynamically changing fitness function that was

adjusted during the coevolutionary run. The last batch of experiments (Batch D) tested

the effectiveness of evolving sumobots by pitting them against our own pre-designed robots.

A summary of the four experimental setups is given in Table 2.

3.3 Breeding strategy

After the evaluation stage we create the next generation of programs from the current

generation. This process involves selection of programs from the current generation and

application of genetic operators to them. The resulting programs enter the next generation.

Specifically, using rank selection to select our candidates we then apply the following

standard breeding operators [12] on the selected programs:

1. Unary reproduction: Copy programs to the next generation with no modification, to

preserve a small number of good individuals.

2. Binary crossover: Randomly select an internal node in each of the two programs and

then swap the sub-trees rooted at these nodes.
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Table 3: Control parameters for genetic programming runs.

Population size 20

Generation count 7 – 57

Selection method rank

Reproduction probability 0.2

Crossover probability 0.8

Mutation probability 0.05 – 0.1

Elitism group 2

3. Unary mutation: Randomly select a node in a tree program and replace the sub-tree

rooted at this node with a newly grown tree.

Using rank selection, 18 programs of the 20 in the population were selected. Each pair

from the selected programs was either crossed over (with probability 0.8) and transferred

to the next generation or copied to the next generation unchanged. Finally, this new

population underwent mutation with a small probability. The remaining (2) programs were

simply the two best programs passed along unchanged—the elitism group [17]. The control

parameters were found empirically through several months of runs and are summarized in

Table 3. We used rank selection to abate possible premature convergence that might occur

in such a small population with other forms of selection (e.g., fitness-proportionate).

3.4 Diversity measures and the dominance tournament

To prevent premature convergence we employed rank selection (rather than fitness propor-

tionate) and mutation. In order to gain insight into whether diversity is indeed maintained

we used pseudo-isomorphs [5], which measure population diversity changes throughout evo-

lution. Pseudo-isomorphs are found by defining a triplet of< terminals, functions, depth >

for each individual, and the number of unique triplets in a population is its diversity mea-

sure. Two identical triplets represent trees with the same number of terminals, functions,

and depth which might be isomorphic. Each comparison of two triplets yields a binary

value, 0 or 1.

Another diversity measure that indicates a difference between two trees, yet returns a

real value, is the Tanimoto difference [16]. The idea is based on a ratio of counted subtrees

of two individuals. Denote by Si1 the set of all subtrees that appear in program i1. The set

has cardinality (size) |Si1 |. The Tanimoto tree difference is defined as:

dt(i1, i2) =
|Si1

⋃
Si2 | − |Si1

⋂
Si2 |

|Si1
⋃
Si2 |

,

and the Tanimoto population diversity measure, for a population of size n, is defined as:

Dt(i1, i2, ..., in) =
2

(n− 1)

n−1∑

j=1

n∑

k=j+1

dt(ij , ik) , n > 1.
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This measure can discern small structural differences that pseudo-isomorphs cannot. On

the other hand, isomorphic trees are not considered equivalent by the Tanimoto measure.

Thus, we chose to employ both measures.

The dominance tournament [23] measure indicates whether any progress is made during

coevolutionary experiments. Once a coevolutionary experiment is over and we have the best

of generation (BOG) of both robots available we alternately add new dominance strategies

per robot. A new robot dominance strategy must defeat all previous dominance strategies

of the opposing robot. We start by pitting BOG 0 (best of generation 0) of both robots, the

winner being set as the first dominance strategy. The next BOG strategy of the losing robot

that defeats this strategy becomes the first dominance strategy of that robot. The second

dominance strategy of the first winning robot is its next BOG that defeats the opposing

dominance strategy—and so on. Each new dominance strategy defeats all previous ones (of

the opposing robot). The dominance tournament measure is the number of strategies that

were found during this tournament, for each robot.

4 Results

This section describes the results of the four batches of experiments appearing in Table 2.

We ran 10 experiments per batch (as noted above, each one taking on average about 35

hours). Results in this section are described for a typical run (per batch), to underscore

specific robotic capabilities that have evolved. In the next section we shall discuss our

observations over all experiments.

4.1 Batch A: Static fitness, single population, dummy opponent

In this experiment we evolved sumobots to push a dummy robot. The initial fight setup

included a dummy immobile robot placed at a random position along the border of the

dohyo, and an evolving sumobot positioned at the center of the dohyo.

We witnessed the emergence of several winning strategies, as shown in Figure 3. Two

prominent behaviors that evolved are: 1) The sumobot rotates until α < −11 and then

approaches the target, pushing it in more then 50% of the fights (if −180 < α < −20 the

sumobot runs straight and has no contact with the other robot); 2) another control system

goes through a wide circling route that manages to push the target in more than 30% of

the times, since it covers over 1/3 of the dohyo circumference.

4.2 Batch B: Static fitness, coevolution, real opponent

Now that we have evolved a number of sumobot strategies that are able to cope successfully

with an immobile target, we will use one of our evolved populations as an initial population

for true sumo-fight evolution, i.e., with two fighting players. Each evolutionary run in this

batch of experiments lasted 2-9 days.

In batches B and C an evolved program might not be able to exhibit its potential if its

evolved opponents keep leaving the dohyo. To resolve this problem we decided that any

player spontaneously leaving the dohyo is scored according to its performance, while its
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(a) (b)

moveLW moveBW

isl

� -11

-11-11

isl

moveFree_2� x1 spin

-7 y2 -7

(c) (d)

Figure 3: Batch A: Sumobot against dummy. The ‘<’ symbols indicate the initial positions
and orientations of the robots, and the line tracings show the robots’ movements during
the fight. a) Evolved fighter rotates toward the target and approaches it if starting from
a position where α < −11. b) Evolved fighter circles widely unconditionally. c) Simplified
program of robot (a). d) Simplified program of robot (b).
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(a) (b)

Figure 4: Batch B: Example of typical coevolved sumobots. a) Demonstration of a fight
between two individuals, from generation 44 of Sumo1 and generation 39 of Sumo2. b)
Sumo1 (on the left) evolved to face its opponent and approach it. The zigzags midway
through Sumo1’s route were caused by some offset (directional difference) in facing its
opponent and trying to hastily rectify its direction.

opponent will not be scored and will be entitled to a rematch. This configuration means

the opposing populations evolve asynchronously. A population of players that stay in the

dohyo accumulates more rematches against opponents that leave the dohyo. Thus, a player

of the first population might face opponents of more than one generation. For example,

an evolved individual of generation 44 fought against an individual of generation 39, as in

Figure 4a.

Examining the fitness plots in Figure 5 it is not evident that there was any progress in

coevolving better sumobot fighter strategies. Using the dominance tournament to measure

the progress of this typical coevolutionary run reveals that most of the progress is accom-

plished during the first few generations (although some progress occurs later). For better

accuracy each pair played 10 games and the total score of each was compared. The robot

dominance strategies, as shown in Figure 5a, indicate 4 levels of dominance, in generations

0,1,4, and 31. The opposing population (Figure 5b) produced its counter dominance strate-

gies in generations 2,5,6, and 7, which were mainly spinners. In this run the first robot had

difficulties overcoming the spinner strategy.

Another evolved sumobot (Figure 4b), which successfully handled spinner strategies,

emerged at generation 8 of a different run. As depicted, this robot first rotates to face its

opponent and then approaches it. It tends to be hasty when rectifying its orientation as

can be seen midway through the fight. This usually happens when the robots are closer.

A batch-B run starts from an initial evolved population (of batch A), thus being suscep-

tible to premature convergence more than the other batches. Utilizing the pseudo-isomorph

and Tanimoto diversity measures (e.g., the run shown in Figure 5) reveals that diversity

can be maintained (note that the “higher” the graphs, the more diverse is the population).
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Figure 5: A typical run of Batch B. a) Dominance tournament results are represented as
tick marks, and as can be seen there are 4 levels of dominance. Also shown are Tanimoto
measure, pseudo-isomorph measure, BOG, and average fitness. b) Same as (a) for opponent.
Population size is 20.

4.3 Batch C: Dynamic fitness, coevolution, real opponent

In this section we coevolved sumobots by changing the fitness function midway through

evolution. Evolution starts with a general desired maneuver, like staying and exploring the

dohyo. When this is (hopefully) achieved we changed the weights to evolve more specific,

harder-to-achieve features, like pushing and fast-wining strategies.

The fitness function we used for this batch is similar to the one described in Subsec-

tion 3.2 above, with two additions: 1) we added a counter-closer component, named retreat,

which subtracts points if the sumobot retreats (we shall use this component for Batch D

as well); and 2) we added a fixed leaving penalty for sumobots that leave the dohyo. The

fitness function thus becomes:

w1 · radius + w2 · sticky + w3 · closer + w4 · speed + w5 · push +

w6 · bonuspush – w7 · retreat + w8 · explore + w9 · bonustay – w10 · leaving.

The weights of the fitness function were adjusted to afford each component with a specific

range of values. After the first ten generations (by which time sumo-fighting strategies had

usually evolved) a change in the fitness function—as described in Figure 6d—was effected.

For example, the bonuspush weight was increased by 30%, while explore was reduced by

66%. Thus, a “mature” sumobot gets less credit for exploring the dohyo and more for

pushing its opponent out.

Observing the progress of the control systems in a typical run revealed that Sumo1 (Fig-

ure 6a, left) exhibited some effective approach maneuvers in early generations. However,

with the course of evolution this behavior disappeared and a different strategy evolved.

Sumo1 developed fast spinning as long as its opponent was far; when its opponent ap-

proached, which it always did after several generations, Sumo1 used various other evolved

fast maneuvers (Figure 6b). These newest behaviors of Sumo1 managed to push its op-

ponent once in a while (Figure 6c), thus collecting enough points to supplant all other

strategies.
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Figure 6: Batch C: Example of typical coevolved sumobots. a) A fight at generation 3.
b) A fight at generation 7. c) Left robot scored a so-called Yuko at generation 13. This
is the highest possible score, given when one contender manages to push its opponent out
of the dohyo. d) The dynamic fitness computation we used: Halfway through the run (at
generation 11) the fitness weights were adjusted as depicted in the figure.
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Figure 7: Batch C: Simplified evolved programs of robots shown in Figure 6c. a) Sumo1
exhibits mostly spinning behavior. b) Sumo2 exhibits approaching behavior.

By generation 13 most of the programs of Sumo2 (right sumo) exhibited approaching

behaviors. This reinforced Sumo1’s fast spinning maneuver that “lured” its opponent to

the edge, then to push it out (Figure 6c). The simplified code for the robots in this last

fight is given in Figure 7.

Generally, the behavioral progress of the evolved sumobots is more pronounced at early

generations. Using dominance tournament and scoring based on the second-half fitness

weights (Figure 6d), we can see that Sumo1 (Figure 8a) produced 2 dominance strategies

at generations 0 and 1, and its last winning dominance strategy at generation 14. Sumo2

(Figure 8b) produced counter dominance strategies at generations 2 and 3. Sumo2 continued

producing better strategies than BOG 3 (i.e., scored higher against Sumo1’s dominance

strategies), but none could win all the 3 dominance strategies of Sumo1, and thus did not

become one of Sumo2’s dominance strategies. Fight samples are shown in Figure 9.

Here, as for batch B, the pseudo-isomorph and Tanimoto diversity measures (Figure 8)

indicate that our population maintained relative diversity. Both diversity measures suggest

a modestly declining trend.

4.4 Batch D: Static fitness, single population, pre-designed opponents

Finally, we evolved sumobots by pitting them against three specially designed sumobot

programs: Spinner, Bashful, and Pusher. Each evolving robot played against all three of

these. The first program—Spinner—spins fast, thus motivating the evolution of approach

behaviors, which are rewarded via the explore, sticky, and closer components of the fitness

function. The second program—Bashful—was designed to avoid contact, thereby motivat-

ing the evolution of chasing techniques. The third program—Pusher—was designed to push

the other robot, giving the evolved sumobot a real fight.

This experiment yielded various control systems. In one run, the evolved sumobot

persistently chased its opponents in zigzag rotations (Figure 10). In this run, whose fitness

progress is depicted in Figure 10d, we noticed an interesting trend. A routine examination of

the robot before recharging it revealed that its left wheel torque capability had diminished.

Checking its fitness progress we could estimate that this problem started at generation 12,

evidenced by the sudden fitness drop at this point. Evolution, as evident in the graph, led
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Figure 8: A typical run of Batch C. a) After 13 generations the fitness computation changed
as described in Figure 6d. Dominance tournament results, represented as tick marks, show
3 levels of dominance. Also shown are Tanimoto measure, pseudo-isomorph measure, BOG,
and average fitness. b) The corresponding opponent’s fitness was changed after 9 genera-
tions. The opponent produced 2 levels of dominance strategies.
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Figure 9: Batch C: Example of dominance strategies of coevolved sumobots. a) Sumo2’s (on
the right) dominance strategy of generation 3 wins in points its “flower shaper” opponent
of generation 11. b) Sumo1 (on the left) evolved the last (and best) dominant strategy.
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Table 4: Summary of sumobot tournament. Yuko: A win wherein the robot pushes its
opponent out of the dohyo. Points: The fitness push component.

Contender Yuko Points
D 23 441
C 19 349
B 18 366
Pusher 7 445
Spinner 5 281
Bashful 3 202

to adaptation strategies that dealt with this mechanical failure.

In another typical run, diversity (Figure 11) was maintained as in the previous batches.

The Tanimoto diversity measure indicates faster convergence than the pseudo-isomorph

measure.

4.5 Post-evolutionary sumo championship

After performing the evolutionary runs we decided to test our evolved robots in an all-out

tournament. The tournament takes place as follows: Each batch of experiments (B, C, D)

“contributes” its top 20 sumobot fighters, i.e., the 2 top-fitness robot controllers of each of

the 10 experiments per batch. We now have six player categories: B, C, D—each comprising

20 players—and Spinner, Bashful, and Pusher—each comprising the single (hand-crafted)

player by that name. Each category plays (fights) 40 games against each other category

(the total number of games per category is thus 200). For category B, C, and D each

fight involves a player selected at random from the respective category. Each category’s

match involves 20 games wherein the individuals were loaded onto one robot and another

20 games wherein the same individuals were loaded onto the other robot. This equalizes

the advantage one platform might have over the other. The results of the tournament are

given in Table 4.

Category D won the top record with 23 Yukos. Categories C and B follow closely,

and the hand-crafted programs are way behind. Individuals B20 (program 20 of batch B),

shown in Figure 12b, and D9 (program 9 of batch D), shown in Figure 12a, won the highest

score with 4 Yukos each. However, D9 takes the lead with 28 points vs. 13 points of B20.

Category D, which was the one evolved against the 3 hand-crafted programs, seems to beat

the other categories. The wins distribution of the 3 batches is shown in Figure 12. Batch

B (Figure 12b) is shown to yield fewer winning sumo fighters while Batch C (Figure 12c)

yields the most.

4.6 Is evolution better than randomness?

Observing the resulting robots’ trajectories and programs it may be argued that these

evolved individuals are somewhat simplistic, and that perhaps randomly created controllers

would work just as well. We counterargue this by performing the following experiment:

First, note that a typical evolutionary run involves a population of 20 individuals run for

20 generations, which amounts to 400 evaluated robot controllers. So we pitted our 60
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top evolved controllers of batches B, C and D against 1020 random individuals, i.e., over

twice the number evaluated during a standard evolutionary run. The random programs

were generated using ramped-half-and-half [12] with a depth of 8. The results were quite

convincingly in our evolved bots’ favor: they won seven times more Yukos than the random

programs—140:21. Clearly, evolution—even with a relatively small number of evaluated

individuals (due to time constraints)—presents a huge advantage.

Finally, we pitted the 30 best random controllers (the 21 that scored a Yuko and another

9 with the highest scores) in a rematch against the 60 evolved ones. Each random robot of

the 30 played 6 games against an evolved one of the 60 (thus each one of the latter played

3 games). The evolved sumobots won two times as many Yukos as the top random ones.

Close inspection of the random programs that won Yukos revealed that most of them were

spinners, while a few others shot straight across, uncaringly bumping into whatever came

across their route. We conclude that in comparison to random bots evolution yielded better

sumobots using less resources.

5 Discussion

We usually evolved chasing maneuvers relatively early on—after less than a dozen genera-

tions. In most cases the control system that evolved rotated the robot toward the target or

toward the opposite side and then advanced forward or backward, respectively, approach-

ing the target and sometimes pushing it. Another commonly evolved sumobot, emerging

especially through coevolution, was a fast spinning robot able to push its opponent outside

when the latter approached.

We observed a variety of sumobot programs that evolved using the same basic fitness

function (perhaps with minor modifications)—all of which behave well. In some runs good

sumobots evolved at an early evolutionary stage but were replaced later on by better control

systems.

Fitness, as evidenced in the graphs, seems to oscillate. This is probably due to the

real-world nature of these experiments, which involves noise from the camera and robots’

accuracy. In addition, the robots do not start the fight from the same exact place and orien-

tation, and the coevolutionary experiments introduced random opponents, thus increasing

the variability of the fitness calculation for each program. Some control programs exhibited

high fitness spikes at early evolutionary stages. Examining these programs revealed that

pure chance was often at hand: Some robots moved straight and fast, and their unfortunate

opponents simply happened to cross their path, resulting in a fast win.

In most of our evolutionary runs behavioral convergence of the population was ultimately

observed. The individuals of the final generations behaved similarly. For example, one

experiment produced clockwise and counter-clockwise spinners, while another experiment

produced mainly approachers. The reason for this behavioral convergence is probably the

small population size, which was necessary due to the lengthy run times (as noted earlier,

we wanted to perform many runs that took days, rather than few runs that would take

months). The genotypic diversity measures we applied indicated that structural diversity

within the population was maintained. Thus, even though behaviors seem to converge, the
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structures do not. Phenotypic diversity measures that would reflect behavioral diversity

rely mainly on fitness, which is inappropriate here, as two distinct strategies could score the

same fitness, while the same exact individual often scores differently even against the same

opponent, as often happens between people in real life.

Due to the extreme simplicity of our robot—only able to push—it would be unfair to

compare it with more elaborate (though non-evolved) robots, e.g., ones that can lift their

opponent, or have better friction control (the only other sumobot evolutionary work, that

of Liu and Zhang [14], described in Section 2, also discusses their not comparing evolved

robots with others). In the end one must remember that our intent herein has been to answer

(positively, if possible) the question posed in the introduction: Can genetic programming

be used to find a sumobot strategy given the limited amount of time available using real

robots?

6 Concluding Remarks

We showed several evolutionary methods for evolving sumobot fighter strategies for real

robots using genetic programming. In future work we plan to take into consideration other

parameters, which might help improve our sumobots yet further: dimension and center of

dohyo, location of robots in previous iteration—essential if we want to take the robots’

real speed vector into account. Using a different robotic platform might yield other inter-

esting results. Finally, automatically defined functions (ADFs) [13], might also be worth

examining.
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