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Surprise versus unsurprise: Implications of emergence in robotics
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Abstract

We examine the eventual role of surprise in two domains of human endeavor: classical engineering and what we call
“emergent engineering”, with examples relevant to the field of robotics. Placing ourselves within the formal framework of the
recently proposed “emergence test”, we argue that the element of surprise, central in the test, serves to illuminate a fundamental
difference between industrial and autonomous robots: unsurprise is demanded of classically engineered automation, while a
mild form of surprise — unsurprising surprise — must of necessity be tolerated in biologically inspired systems, including
behavior-based robotics. © 2001 Published by Elsevier Science B.V.

Keywords:Emergence test; Emergent engineering; Evolutionary robotics; Artificial neural networks

“Fascinating” is a word I use for the unexpected.
“Interesting” shall suffice here.

Mr. Spock,Star Trek(the original TV series)

1. Introduction

One of the significant dividing lines that can be
drawn within the field of robotics is that between in-
dustrial robots and autonomous ones. Industrial robots
are epitomized by the robotic “arm”, as well as by
the automated guided vehicles (AGVs) which follow
fixed trajectories and now proliferate in transporting
materials in offices and production lines of anything
from T-shirts to automobiles. We distinguish such de-
vices from autonomous robots which areexpectedto
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demonstrate some form of autonomy, namely an abil-
ity to adapt to modest changes in their environment
in ways that would be beyond them if their behavior
were rigidly predefined in advance.

Where autonomous, and adaptive, robotics are con-
cerned, investigators currently research bio-inspired
techniques and this tendency will most likely move
into engineering practice. At least two such method-
ologies inspired by biology are already in widespread
engineering use: evolutionary algorithms and artifi-
cial neural networks. Newer bio-inspired algorithmic
methods will also mature from the science to the
engineering stage, e.g., cellular computing [9] and
ant algorithms [3]. Collective strategies like flock-
ing, predator–prey behavior, foraging, and stigmergy,
as well as phenomena such as self-replication and
self-assembly are also likely to ultimately find appli-
cations in the real world. The same bio-inspired trend
can be observed in mobile robotics, where locomo-
tive forms have gaits inspired by crawling insects,
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swimming fish, trotting dogs, swinging monkeys, and
even biped walking man. These exotic new creatures
are progressively eroding the near monopoly once
enjoyed by straightforwardly designed wheeled robot
bases.

When engineers use technologies which originate
in nature, they soon encounter the phenomenon of
emergence, where a system displays novel behaviors
that escape, frustrate or sometimes, serendipitously,
exceed the designer’s original intent. A case in point,
artificial neural network (ANN) generalization: not
only the mathematically founded learning algorithms
(e.g., backpropagation) but also the surprisingly good
emergentnoise-immunity of classifier networks have
allowed ANN technology to move into commercial
optical character recognition (OCR) products.

Whether a boon or a nuisance, emergent phenom-
ena in these novel adaptive systems seem puzzling
and unavoidable. As regards their appearance in
behavior-based robotics, Arkin recently observed that:

Coordination functions. . . are algorithms and
hence contain no surprises and possess no magical
perspective. . . Why then does the ineffable qual-
ity of emergence arise when these behavior-based
robotic systems are released in the world? Why can
we not predict their behavior exactly? [1, p. 107]

2. Diagnosing emergence

The emergence label is all too often used to justify
an unavoidable economy of exact explanation when
striking behaviors are generated and observed, as re-
marked upon by Arkin:

Emergence is often invoked in an almost mystical
sense regarding the capabilities of behavior-based
systems. Emergent behavior implies a holistic ca-
pability where the sum is considerably greater than
its parts. [1, p. 105]

In trying to ascertain the common ground of the
“unexpectedness” in experiments reported by re-
searchers in the field of artificial life (Alife), we felt
a need for an “emergence tag gun”: a tool that would
significantly advance our reasoning about the proper-
ties of systems labeled as emergent or non-emergent,
while sidestepping the quibbling invariably associ-
ated with a rigid formal definition of some concept.

Thus, along with our colleague Mathieu Capcarrère,
we resorted to an operant definition in the spirit of
Turing’s intelligence test [10].

In our original paper [7], the interested reader will
find a basket of eight examples culled from the Alife
literature and submitted to the judgement of the emer-
gence test, as well as a discussion on the relationship
between our emergence tag and the definitions pro-
posed by other researchers. We have recapitulated only
the clauses of the test below, in order to render this
paper self-contained.

2.1. Formulating the emergence test

Our concern is limited to what Herbert Simon called
the “sciences of the artificial” [8]; it is intended to
diagnose emergence in systems that are engineered by
man, not those that occur naturally (hence clause 1 of
the test below). The test consists of three criteria —
design, observation, and surprise — for conferring the
emergence label.

Assume that the scientists attendant upon an Alife
experiment are just two: a system designer and a sys-
tem observer (both of whom can in fact be one and the
same), and that the following three conditions hold:

1. Design. The system has been constructed by the de-
signer by describinglocal elementary interactions
between components (e.g., artificial creatures and
elements of the environment) in a languageL1.

2. Observation. The observer isfully awareof the de-
sign, but describesglobal behavior and properties
of the running system, over a period of time, using
a languageL2.

3. Surprise. The language of designL1 and the
language of observationL2 are distinct, and the
causal link between the elementary interactions
programmed inL1 and the behaviors observed in
L2 is non-obviousto the observer — who there-
fore experiences surprise. In other words, there is a
cognitive dissonance between the observer’s men-
tal image of the system’s design stated inL1 and
his contemporaneous observation of the system’s
behavior stated inL2.

When assessing this clause of our test, one
should bear in mind that as human beings we are
quite easily surprised (as any novice magician
will attest). The question reposes rather on how
evanescentthe surprise effect is, i.e., how easy (or
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strenuous) it is for the observer to bridge theL1–L2
gap, thus reconciling his global view of the system
with his awareness of the underlying elementary
interactions.

The above three clauses, relating design, observa-
tion, and surprise describe our conditions for diagnos-
ing emergence, i.e., for accepting that a system is dis-
playing emergent behavior.

2.2. Conferring the emergence label on ANN
classifiers

We will now use the emergence test to justify
our conferring the emergence label on ANN clas-
sifiers. These are ANN which take the description
of a pattern as input, and assign this input pat-
tern to one of a number of predetermined classes.
Handwritten-character recognizers fall into this cat-
egory, outputting a character value for each input
gesture.

• Design. The design languageL1 is that of artifi-
cial neuron transfer-function definitions, network
topologies, and synaptic weights.

• Observation. The observation languageL2 is that
of input–output behavior, i.e., input patterns and
class-membership assignments.

• Surprise. While fully aware of the underlying neu-
ronal definitions of the topological connections and
of the synaptic weights, the observer nonetheless
marvels at the performance of the network, in par-
ticular its ability to generalize and classify novel
inputs — previously unseen patterns — a behavior
which hecannot fully explain, or predict without
exact computation.

Diagnosis. Emergent behavior is displayed by ANN
classifiers.

2.3. Diagnosing emergence in evolutionary robotics

We will now use the emergence test to justify
our conferring the emergence label on the learning
process for robots whose behavior is evolved via
evolutionary-computing techniques [4]. These robots
learn behaviors such as obstacle avoidance, wander-
ing, and wall-following, via algorithms inspired by
Darwinian evolution.

• Design. The design languageL1 is that of basic
robot sensations and actions, including sensor read-
ings (e.g., visual, proximity, sonar) and motor ac-
tions (e.g., wheels, grippers).

• Observation. The observation languageL2 is that of
evolved high-level behavior, wherein the robot acts
(and perhaps interacts) within its environment (e.g.,
obstacle avoidance, wandering, wall-following,
flocking, and group foraging). Note that the fitness
function of the evolutionary algorithm is usually
specified inL2 terms.

• Surprise. While fully aware of the underlying
behavioral building blocks, the observer nonethe-
less marvels at the performance of the evolved
robot(s).

Diagnosis. Emergent behavior is displayed by evolved
or evolving robots. (In several recent works, re-
searchers have added yet another emergent technique
on top of the evolutionary process — ANN [6] —
which serves to further widen theL1–L2 gap.)

Thus, by conferring theemergence labelon evo-
lutionary robotics, we formally acknowledge that
a significant degree of surprise accompanies any
thoughtful consideration of the evolution of high-level
behavior. At the present state of our practice of
the art of robotics, the surprise cited centres on the
evolutionary learning process itself, and in many
cases will carry over to the actual behaviors finally
evolved.

3. Categories of surprise

In his bookScientific Literacy and the Myth of the
Scientific Method, Henry H. Bauer wrote [2]:

To make sense of the tension between innovation
and conservatism in science, more helpful than the
banal distinction between what is known and what is
not known is the discrimination of three categories:
the known, the known unknown, and the unknown
unknown.

In the same vein, when reflecting on the degree
of surprise felt by the observer, we would say that
there are three categories of surprise: (1) unsurprise
(i.e., no surprise); (2) unsurprising surprise, where our
surprise is confined within well-defined bounds; (3)
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surprising surprise, where we are totally and utterly
taken aback.

We build on this by stating that the products of clas-
sical — non-emergent — engineering and the products
of emergent engineering are perceived very differently
in a social context, in large part, owing to the different
categories of surprise involved: unsurprise in classical
engineering and unsurprising surprise in emergent en-
gineering (we discuss the third category — surprising
surprise — and its manifestation in the field of artifi-
cial life in [6]).

4. Classical engineering: unsurprise

The mail-cart scenario. Your company, which dis-
tributes AGVs, has won the tender to automate mail
distribution in a large office building. The AGVs which
you will use employ painted-line guidance [5], in that
they follow predefined paths marked on the floor by
means of a fluorescent die. Your boss has assigned
you the task of laying down the guidance tracks. The
specifications you are given are extremely vague, as
you have to tackle the existing office and cubicle lay-
out and route tracks through it which your automated
cart can negotiate without getting jammed or creating
a human traffic jam in tight spots.

The mail client’s wishes in the observation lan-
guageL2 describe (albeit very vaguely) observable
(functional and behavioral) properties of the cart as it
drives itself around: the areas it should visit at least
once per round, the fact that it should not get stuck,
and that it should concede a certain minimal amount
of lebensraumto humans who circulate in the same
areas. Now you, the engineer, will create a design in
L1, i.e., a track layout, ensuring that the cart during
its operation meets thesebehavioralspecifications.

There should be no surprises in the scenario de-
scribed above: in classical engineering we always
seekunsurprise(no surprise). The mail cart can be
built and programmed to meet the specsperfectly, as
easily proved by a walk to your local office materials
handling supplier. The engineer in these non-emergent
classical domains has at his disposal a set of scientific
theories (in this case an understanding of geometry),
and sufficient experience with these robots, such that
he has confidence in his mental model of how hisL1

constructions will behave when observed inL2 by
the “client”.

5. Emergent engineering: unsurprising surprise

Whereas in the preceding section we focused on
engineering with the help of a theory, which would be
labeled as non-emergent, we now wish to move our
attention to the case whereemergencestrides onto the
scene.

The garbage-disposer scenario. The president of the
company that bought your robot track-following mail
cart appreciates your engineering skills, and calls you
to his office one bright morning to discuss a new
project. The employees in his R&D department tend
to work fervently, cluttering their office floors with
scraps of paper and empty beverage cans. Impressed
by the performance of the roving mail distributor, the
president would like to commission whatseems to him
a similar project: designing a garbage-disposal robot,
which will roam about the R&D office rooms at night
— and clean them up.

To solve the assigned garbage-disposal task you
decide to use an emergent technology — evolutionary
robotics — whose emergent behavior we discussed
earlier.

The garbage-disposer scenario (Continued). Having
built and evolved the garbage-disposal robot, you in-
vite the president and his board to see the results, and
proudly demonstrate the operation of the robot. You
report to them that tests have shown the robot capa-
ble of cleaning 72% of the garbage items it finds on
the floor. The president is very happy with this fig-
ure and reaches immediately for the official company
checkbook. You do not of course tell the president
how amazed you are at the success of the project. You
sip the champagne and gaze with fascination at the
strange trajectories of the evolved robot as it pursues
and captures the scattered garbage items.

Your lingering sense of amazement stems from your
inability to bridge theL1–L2 gap. You have no idea
whatsoever how tofully explain the performance in
L1 terms: sensors, actuators, control algorithms; at
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best you can give partial descriptions and educated
guesses. And if given different specifications — a new
milieu or a different disposal policy — all you can do
is re-evolve the robot on location, and evolution is a
process whose goals are described in theL2 language.
In all honesty, the emergent nature of evolutionary
robots means that you — the designer — are surprised
every time you think about them hard,even when they
are working as designed!

The more you think of “engineering with emer-
gence”, oremergent engineeringas we call it, the more
it comes to resound oxymoronically. Emergent engi-
neering, while inherently containing a non-evanescent
element of surprise, seeks to restrict itself to what we
call unsurprising surprise: though there is a persistent
L1–L2 understanding gap, and thus the element of sur-
prise does not fade into oblivion, we wish, as it were,
to take in this surprise in our stride. Yes, the evolved
robot works (surprise), but it is in some oxymoronic
senseexpectedsurprise: as though you were planning
your own surprise birthday party.

6. Deploying emergent techniques in the real
world

How can the engineer, in commercial practice, de-
cide to deploy emergent approaches in engineering
applications if the (unsurprising) surprise effect is
omnipresent in the method employed?

During the design phase of a device, which embod-
ies an aspect of emergence, two distinct modalities of
unease maypotentially arise due to emergence, and
these modalities we wish to distinguish rather than
conflate:

1. Potential engineering difficulties.The engineer’s
task ofcreating a designmay be rendered difficult
by the emergent aspects. For example, evolutionary
computation is still a somewhat black art rather
than a perfectly predictable process.

2. Potential behavioral anomalies.The behavior of
the deployed application may manifest surprising
aspects. Thus, neural network-based handwriting
recognizers have been known to develop surprising
allergies after hitting the market.

Let us consider the practical implications of these
caveats which are due to emergence.

• Point (1) above, engineering difficulties caused by
emergence, would impinge mainly on the engineer
and remain invisible to the customer. Thus these
difficulties would require the engineering personnel
and management to accommodate a less systematic
engineering process. For instance, when employing
neural networks or evolutionary optimization, the
designer will have to adapt to performing multi-
ple runs of the corresponding stochastic algorithms.
These runs may or may not converge to yield the
desired quality of solution. Manual tuning of some
parameters may prove necessary, and supervising
the process can be both expensive in computing
resources and psychologically frustrating. Some-
times, the process may fail altogether, after having
consumed considerable time and money. With expe-
rience (maybe years) a process becomes more well
understood, emergence subsides (or evanesces al-
together), and the engineer’s task becomes a more
predictable routine.

• Point (2) above, the possibility of emergence of
behavioral anomalies, impacts the company selling
the product as a whole, and not only the design
team. Surprises in the real world may — in litigious
societies — generate costly product liability suits.
ABS car brakes, e.g., are typical of an application
which would benefit from the most advanced con-
trol algorithms, but where the associated legal risks
are high (indeed ABS brakes have been known to
fail dangerously after hitting the market).

To combat the unease described in point (2), we
would argue that the only acceptable way to gain
confidence in a product embodying emergent tech-
nologies is to specify an extremely rigorous test-
ing regime: classical, non-emergent methods induce
trust because they rest on well-understood theoret-
ical models, and the envelopes of confidence of
those models are known. Emergent methods are al-
ways pushing the envelope — yet there is none!
Hence, a methodology is needed whereby the engi-
neer can confidently represent to management (and
ultimately to clients) that a design has been ade-
quately tested.

Indeed, a practical application of the emergence
test might be in the review of risks to which com-
panies may subject their products before launch:
when a product conforms to classical engineer-
ing practice, it will require a minimal amount of
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due-diligence testing. However, the presence of any
technology, diagnosed as emergent, should trigger a
stringent review of the testing process before a de-
sign is signed off for production. At the very least,
such a procedure might prevent embarrassment (as
was the case of the Apple Newton PDA whose
handwriting recognizer was lampooned nationwide
in the Doonesbury comic strip). In some applica-
tions a hard-eyed review of testing procedures may
save lives.

Because they are distinct, the two mentioned dif-
ficulties induced by emergence and the associated
surprise can surface independently. An example of
a situation where the engineer faces (1) and not (2)
is in, say, a product palette packing problem, where
each geometric solution to the packing is perfectly
understandable and usable, even though the time to
compute the packing solution fluctuates wildly, be-
cause the evolutionary algorithm invoked is stochas-
tic. Conversely, an adaptive run-time load-balancing
algorithm on a cluster of web servers may be perfectly
implemented and effective, but may sometimes suffer
such brittle degradation of performance under satura-
tion load that its adoption would pose a commercial
risk to the sites that run it.

It can be argued that the arduous testing procedure
suggested for detecting emergent behavioral anoma-
lies in (2) above would serve to move any difficul-
ties with a system’s behavior back into the engineer’s
realm of responsibility, transforming instances of (2)
into instances of (1).

Emergence in engineering — and the ensuing reli-
ability issues — are an unavoidable consequence of
wanting “smart” machines that do things we cannot
really specify, but can only say “I will recognize it
when I see it”.
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