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Abs t r ac t .  Living beings are complex systems exhibiting a range of de- 
sirable qualifications that have eluded realization by traditional engineer- 
ing methodologies. In recent years we are witness to a growing interest in 
Nature exhibited by engineers, wishing to imitate the observed processes, 
thereby creating powerful problem-solving methodologies. If one consid- 
ers Life on earth since its very beginning, three levels of organization can 
be distinguished: the phylogenetic level concerns the temporal evolution 
of the genetic programs within individuals and species, the ontogenetic 
level concerns the developmental process of a single multicellular organ- 
ism, and the epigenetic level concerns the learning processes during an 
individual organism's lifetime. In analogy to Nature, the space of bio- 
itlspired systems can be partitioned along these three axes, phylogeny, 
ontogeny, and epigenesis, giving rise to the POE model. This paper is 
an exposition and examination of bio-inspired systems within the POE 
framework. We first discuss each of the three axes separately, consid- 
ering the systems created to date and plotting directions for continued 
progress along the axis in question. We end our exposition by a discussion 
of possible research directions, involving the construction of bio-inspired 
systems that are situated along two, and ultimately all three axes. This 
presents a vision for the future which will see the advent of novel systems, 
inspired by the powerful examples provided by Nature. 

1 Introduction: Biological inspiration as a bridge from 
the natural sciences to engineering 

Traditionally, the development of the engineering disciplines (civil, electrical, 
computer  engineering, etc') and tha t  of the natural  sciences (physics, chemistry, 
biology, etc ')  have proceeded along separate  tracks. The natural  scientist is a 
detective: faced with the mysteries of nature,  such as meteorological phenomena,  
chemical reactions, and the development of living beings, he seeks to analyze 
existing processes, to explain their operation, to model them, and to predict their 
future behavior. The  engineer, on the other hand, is a builder, faced with social 
and economic needs, he tries to create artificial systems (bridges, cars, electronic 
devices) based on a set of specifications (a description) and a set of primitives 
(elementary components such as bricks, beams, wires, motors, transistors). 
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These two major branches of human endeavor have been drawing closer to- 
gether during the past decades. It is nowadays common for scientists to use tools 
created by engineers; to cite one example of many, we are witness to the system- 
atic use of electronics in the medical world for such tasks as decoding the human 
genome, visually representing highly complex chemical molecules, computerized 
tomography, and so on. 

More recently, engineers have been allured by certain natural processes, giv- 
ing birth to such thriving domains as artificial neural networks and evolution- 
ary algorithms. Living beings are complex systems exhibiting a range of desir- 
able qualifications, such as evolution, adaptation, and fault tolerance, that have 
proved difficult to realize using traditional engineering methodologies. Such sys- 
tems are characterized by a genetic program, the genome, that defines their 
development, their functioning and their extinction. If one considers Life on 
earth since its very beginning, then the following three levels of organization can 
be distinguished [9, 10]: 

Phy logeny  The first level concerns the temporal evolution of the genetic pro- 
gram, the hallmark of which is the evolution of species, or phylogeny. The 
"multiplication" of living beings is based upon the reproduction of the pro- 
gram, subject to an extremely low error rate at the individual level, so as 
to insure that the identity of the offspring remains practically unchanged; 
this error rate is higher at the group or species level [43]. It is precisely these 
copying errors, due to mutation (asexual reproduction) or mutation along 
with recombination (sexual reproduction), that gives rise to the emergence of 
novel species or new organisms. The phylogenetic mechanisms are fundamen- 
tally non-deterministic, with the mutation and recombination rate providing 
a major source of diversity; this diversity is indispensable for the survival of 
living species, for their continuous adaptation to a changing environment, 
and for the appearance of new species. 

Ontogeny  Upon the appearance of multicellular organisms, a second level of bi- 
ological organization manifests itself. The successive divisions of the mother 
cell, the zygote, with each newly formed cell possessing a copy of the orig- 
inal genome, is followed by a specialization of the daughter cells in accor- 
dance with their environment, i.e., their position within the ensemble; this 
latter phase is known as cellular differentiation. Ontogeny is therefore the 
developmental process of a multicellular organism; this process is essentially 
deterministic: an error in a single base within the genome can provoke an on- 
togenetic sequence which results in notable, possibly lethal, malformations. 

Epigenesis The ontogenetic program is limited in the amount of information 
that can be stored, thereby rendering the complete specification of the or- 
ganism impossible. A well-known example is that of the human brain with 
some 101~ neurons and 1014 connections, far too large a number to be com- 
pletely specified in the four-character genome of length 3 • 109. Therefore, 
upon reaching a certain level of complexity, there must emerge a different 
process that permits the individual organism to integrate the vast quantity 
of interactions with the outside world. This process is known as epigenesis, 
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and primarily includes the nervous system, the immune system and the en- 
docrine system. These systems are characterized by the possession of a basic 
structure that is entirely defined by the genome (the innate part), which is 
then subjected to modification through interactions of the individual with 
the environment (the acquired part). The epigenetic processes can be loosely 
grouped under the heading of learning systems. 

In analogy to Nature, the space of bio-inspired systems can be partitioned 
along these three axes: phylogeny, ontogeny, and epigenesis; we refer to this as the 
POE model (Figure 1). As an example, consider the following three paradigms, 
each of which is positioned along one axis: (P) evolutionary algorithms are the 
(simplified) artificial counterpart of phylogeny in Nature; (O) self-reproducing 
automata are based on the concept of ontogeny, where a single mother cell gives 
rise, through multiple divisions, to a multicellular organism; (E) artificial neural 
networks embody the epigenetic process, where the system's synaptic weights 
and perhaps topological structure change through interactions with the envi- 
ronment. Within the domains collectively referred to as soft computing [67], 
characterized by ill-defined problems coupled with the need for continual adap- 
tation or evolution, the above paradigms yield impressive results, rivaling those 
of traditional methods. 

Phylogeny (P) 

Epigenesis (E) 

Ontogeny (0) 

Fig. 1. The POE model. Partitioning the space of bio-inspired systems along three 
axes: phylogeny, ontogeny, and epigenesis. 

Our goal in this paper is to introduce the basics of bio-inspired systems along 
each of the three axes; due to space restrictions, and in following the main theme 
of the conference, we shall concentrate on the phylogenetic axis (Section 2). In 
Section 3 we present a brief account of the ontogenetic axis, considering the role 
of self-reproduction within the scheme of bio-inspired systems. Section 4 con- 
siders the third axis, namely epigenesis. Our paper ends in Section 5 with our 
conclusions and directions for future research, based on the POE model; specif- 
ically, we shall consider the possibilities of combining two axes, along with the 
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ultimate goal of combining all three. This presents a vision for the future which 
will see the construction of novel systems, inspired by the powerful examples 
provided by Nature. 

2 The phylogenetic axis: Evolvable hardware 

2.1 Artificial e v o l u t i o n  

The idea of applying the biological principle of natural evolution to artificial 
systems, introduced more than three decades ago, has seen an impressive growth 
in the past few years. Usually grouped under the term evolutionary algorithms or 
evolutionary computation, we find the domains of genetic algorithms, evolution 
strategies, evolutionary programming, and genetic programming [2, 17, 22, 28, 
32, 41, 42, 56]. As a generic example of artificial evolution, we consider genetic 
algorithms, originally invented by John Holland in the 1960s [28]. 1 

A genetic algorithm is an iterative procedure that consists of a constant-size 
population of individuals, each one represented by a finite string of symbols, 
known as the genome, encoding a possible solution in a given problem space. 
This space, referred to as the search space, comprises all possible solutions to 
the problem at hand; generally speaking, the genetic algorithm is applied to 
spaces which are too large to be exhaustively searched. The symbol alphabet 
used is often binary due to certain computational advantages purported in [28] 
(see also [22]); this has been extended in recent years to include character-based 
encodings, real-valued encodings, and tree representations. 

The standard genetic algorithm proceeds as follows [63]: an initial population 
of individuals is generated at random or heuristically. Every evolutionary step, 
known as a generation, the individuals in the current population are decoded 
and evaluated according to some predefined quality criterion, referred to as the 
fitness, or fitness function. To form a new population (the next generation), 
individuals are selected according to their fitness, by using a given selection 
procedure. Selection alone cannot introduce any new individuals into the popu- 
lation, i.e., it cannot find new points in the search space; these are generated by 
genetically-inspired operators, of which the most well-known are crossover and 
mutation. Crossover is performed with probability Pc~oss (the "crossover proba- 
bility" or "crossover rate") between two selected individuals, called parents, by 
exchanging parts of their genomes (i.e., encodings) to form two new individuals, 
called offspring;, in its simplest form, substrings are exchanged after a randomly 
selected crossover point. This operator enables the evolutionary process to move 
toward "promising" regions of the search space. The mutation operator is intro- 
duced to prevent premature convergence to local optima by randomly sampling 
new points in the search space. It is carried out by flipping bits at random, with 
some (small) probability pratt. Genetic algorithms are stochastic iterative pro- 
cesses that are not guaranteed to converge; the termination condition may be 

1 For the purposes of this presentation, the differences with other evolutionary algo- 
rithms are inconsequential. 
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specified as some fixed, maximal number of generations or as the attainment of 
an acceptable fitness level. 

Evolutionary algorithms are ubiquitous nowadays, having been successfully 
applied to numerous problems from different domains, including optimization, 
automatic programming, machine learning, economics, immune systems, ecology, 
population genetics, studies of evolution and learning, and social systems [42]. 
For recent reviews of the current state of the art, the reader is referred to [62, 63]. 

2.2 Large scale programmable circuits 

An integrated circuit is called programmable when the user can configure its 
function by programming. The circuit is delivered after manufacturing in a 
generic state and the user can adapt it by programming a particular function; 
the programmed function is coded as a string of bits representing the configura- 
tion of the circuit. In this paper we consider solely programmable logic circuits, 
where the programmable function is a logic one, ranging from simple boolean 
functions to complex state machines. 

The first programmable circuits allowed the implementation of logic cir- 
cuits that were expressed as a logic sum of products; these are the PLDs (Pro- 
grammable Logic Devices), whose most popular version is the PAL (Programmable 
Array Logic). More recently a new player has appeared on the scene, affording 
higher flexibility and more complex functionality: the Field-Programmable Gate 
Array (FPGA) [54]. An FPGA is an array of logic cells placed in an infrastruc- 
ture of interconnections (Figure 2), which can be programmed at three distinct 
levels: (1) the function of the logic cell; (2) the interconnections between cells; 
(3) the input and outputs. All three levels are programmed via a string of bits 
that is loaded from an external source, either once or several times; in the latter 
case the FPGA is considered recontlgurable. 

FPGAs are highly versatile devices that offer the designer a wide range of 
design choices. However, this potential power necessitates a plethora of tools in 
order to design a system; essentially, these generate the configuration bit string 
upon given such inputs as a logic schema or a high-level functional description. 

2.3 Evolvable hardware: The present 

If one carefully examines the work carried out to date under the heading 'evolv- 
able hardware', it becomes evident that this mostly involves the application of 
evolutionary algorithms to the synthesis of digital systems [55] (recently, Koza 
has studied analog systems as well [33]). Taking this point of view, evolvable 
hardware is simply a sub-domain of artificial evolution, where the final goal 
is the synthesis of an electronic circuit. The work of [32], where genetic pro- 
gramming was applied to the evolution of a three-variable multiplexer, may be 
considered an early precursor along this line; it should be noted that at the time 
the main goal was that of demonstrating the capabilities of the genetic program- 
ming methodology, rather than designing actual circuits. We argue that the term 
Evolutionary Circuit Design would be more descriptive of such work than that 
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Fig. 2. A schematic diagram of a Field-Programmable Gate Array (FPGA). 

of 'evolvable hardware'. For now, we shall remain with the latter (popular) term, 
however, we shall return to the issue of clarifying definitions in Section 2.5. 

Taken as a design methodology, evolvable hardware offers a major advantage 
over classical methods; the designer's job is reduced to that of specifying the cir- 
cuit requirements and the basic elements, whereupon evolution "takes over" to 
"design" the circuit. Currently, most evolved digital designs are sub-optimal with 
respect to traditional methodologies, however, improved results are continuously 
attained. Examining work carried out to date, one can derive a rough classifi- 
cation of current evolvable hardware, in accordance with the genome encoding 
(i.e., the circuit description), and the calculation of a circuit's fitness. 

Genome encoding 

�9 High-level languages. The first works carried out used a high-level functional 
language to encode the circuits in question, a representation far-removed 
from the structural (schematic) description. In [32], the evolved solution is a 
program describing the (desired) multiplexer rather than an interconnection 
schema of logic elements (the actual hardware representation). The work of 
[25] uses a high-level hardware language to represent the genomes. [31, 33] 
used the rewriting operation, in addition to crossover and mutation, in order 
to enable the formation of a hierarchical structure; this is still within the 
framework of a high-level language. 

�9 Low-level languages. The idea of directly incorporating within the genome 
the bit string representing the configuration of a programmable circuit was 
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expressed early on by [13], though without demonstrating its actual imple- 
mentation. As a first step one must choose the basic logic gates (e.g., AND, 
OR, and NOT), and suitably codify them, along with the interconnections 
between gates, to produce the genome encoding. An example of this ap- 
proach is the work of [61]. [26] used a low-level bit string representation of 
the system's logic schema to describe small-scale PALs, where the circuit 
is restricted to a logic sum of products. The limitations of the PAL circuits 
have been overcome to a large extent by the introduction of FPGAs, as used, 
e.g., by [60]. 
The use of a low-level circuit description that requires no further transfor- 
mation is an important step forward since this potentially enables placing 
the genome directly in the actual circuit, thus paving the way toward truly 
evolvable hardware. However, up until recently, FPGAs had introduced their 
own share of problems: (1) the genome's length was on the order of tens of 
thousands of bits, rendering evolution practically impossible using current 
technology; (2) one still had to extend the genome into a logic schema, 
a phase for which automatic methods do not exist; (3) within the circuit 
"space", consisting of all representable circuits, a large number were invalid 
(e.g., containing short circuits). 
With the introduction of the new family of FPGAs, the Xilinx 6200, these 
problems have been attenuated [60]. As with previous FPGA families, there 
is a direct correspondence between the bit string of a cell and the actual 
logic circuit, however, this now always leads to a viable system. Moreover, 
as opposed to previous FPGAs where one had to configure the entire system, 
the new family permits the separate configuration of each cell, a markedly 
faster and more flexible process. [60] has employed this latter characteristic 
to reduce the genome's size, without, however, introducing real-time, partial 
system reconfigurations. 

Fitness  ca lculat ion  
�9 Offline evolvable hardware. The use of a high-level language for the genome 

representation means that one has to transform the encoded system in order 
to evaluate its fitness. This is carried out by simulation, with only the final 
solution found by evolution actually implemented in hardware. This form of 
simulated evolution is known as otttine evolvable hardware [55]. 

�9 Online evolvable hardware. As noted above, the low-level genome represen- 
tation enables a direct configuration (and reconfiguration) of the circuit, 
thus entailing the possibility of using real hardware during the evolutionary 
process; this has been called online evolution by some of the works found in 
[55]. 

2.4 C o m m o n  features  o f  current  phy logene t i c  hardware 

Examining work carried out to date we find a number of common character- 
istics that span both online and ofitine systems, often differing from biological 
evolution: 2 

This is not necessarily disparaging, as discussed in Section 5. 
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�9 Evolution pursues a predefined goal: the design of an electronic circuit, sub- 
ject to precise specifications; upon finding the desired circuit, the evolution- 
ary process terminates. 

�9 The population has no material existence; at best, in what has been called 
online evolution, there is one circuit available, onto which individuals from 
the (offiine) population are loaded one at a time, in order to evaluate their 
fitness. 

�9 The absence of a real population in which individuals coexist simultane- 
ously entails notable difficulties in the realization of interactions between 
"organisms". This results in a completely local fitness calculation, contrary 
to nature which exhibits a co-evolutionary scenario. 

�9 If one a t tempts  to resolve a well-defined problem, involving the search for a 
specific combinatorial or sequential logic system, there are no intermediate 
approximations; fitness calculation is carried out by consulting a lookup 
table which is a complete description of the circuit in question. This casts 
some doubts into the utility of using an evolutionary process, since one can 
directly implement the lookup table in a memory device, a solution which 
may often be faster and cheaper. 

�9 The evolutionary mechanisms are carried out outside the resulting circuit. 
This includes the genetic operators (selection, crossover, mutation) as well 
as fitness calculation. As for the latter, while what is currently advanced as 
online evolution uses a real circuit for fitness evaluation, the fitness values 
themselves are stored elsewhere. 

�9 The different phases of evolution are carried out sequentially, controlled by 
a central software unit. 

2.5 E v o l v a b l e  h a r d w a r e :  A look  a h e a d  a long  t h e  p h y l o g e n e t i c  axis  

The phylogenetic axis admits a number of qualitative sub-divisions (Figure 3): 

�9 At the bo t tom of this axis, we find what is in essence evolutionary circuit 
design, where all operations are carried out in software, with the resulting so- 
lution possibly loaded onto a real circuit. Though a potentially useful design 
methodology, this falls completely within the realm of traditional evolution- 
ary techniques. As examples one can cite the works of [25, 26, 31, 33]. 

�9 Moving upward along the axis, one finds works in which a real circuit is used 
during the evolutionary process, though most operations are still carried out 
offiine, in software. An example is the work of [60], where fitness calculation 
is carried out on a real circuit. It is important  to note that  while this has 
been referred to as online evolution, it would probably be more appropriate 
to reserve this term for the next sub-division. 
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Phylo leny 

i ~  All genetic operations carried out in hardware; ) 
open-ended evolution 

IF~AII genetic operations carded out in hardware; "~ 
not open-ended evolution .,) 

Real circuit; ) 
most operations carried out in software 

IF• Evolutionary circuit design; .~ 
all operations carried out in software 

oo 

Fig. 3. The phylogenetic axis. 

�9 Still further along the phylogenetic axis, one finds systems in which all ge- 
netic operations (selection, crossover, mutation, fitness evaluation) are car- 
ried out online, in hardware. The major aspect missing concerns the fact that  
evolution is not open-ended, i.e., there is a predefined goal and no dynamic 
environment so to speak of. An example is the work of [21]. 

�9 This represents the top of the phylogenetic axis, where a population of hard- 
ware entities evolves in an open-ended environment. 

We argue that  only the last category can be truly considered evolvable hard- 
ware, a goal which still eludes us at present. A natural application area for such 
systems is within the field of autonomous robots, which involves machines ca- 
pable of operating in unknown environments without human intervention [4]. 
Another interesting example would be what we call "Hard-Tierra"; this involves 
the hardware implementation of the Tierra "world" [51], which consists of an 
open-ended environment of evolving computer programs. A small-scale experi- 
ment along this line was undertaken in [18]. The idea of Hard-Tierra is important 
since it demonstrates that  %pen-endedness' does not necessarily imply a real, 
biological environment. 

3 Ontogeny and self-reproducing hardware 

The fundamental principle of embryology in real life is illustrated in Figure 4 
(based on [11, 12]) which covers a period of two generations preceded and fol- 
lowed by an indefinite number of generations. The first condition is that  there 
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must be replicators, entities capable, like DNA molecules, of self-replication. The 
second condition is our main concern: there must be an embryonic process. The 
genome should influence the development of the external characteristics of the 
being, the phenotype; and the replicators must be able to wield some phenotypic 
power over their world, such that some of them are more successful at replicating 
themselves than others (this point is crucial for the phylogenetic process). It is 
important to understand that genes, the basic constituents of the genome~ act on 
two quite different levels: they participate in the embryonic process, influencing 
the development of the phenotype in a given generation, and they participate 
in genetics, having themselves copied down the generations (reproduction). This 
is epitomized by an empirical separation between the disciplines of genetics and 
embryology; genetics is the study of the vertical arrows in Figure 4, i.e., the 
relationship between genotypes in successive generations, while embryology is 
the study of the horizontal arrows, i.e., the relationship between genotype and 
phenotype in any one generation [12]. 

~developmental process ~ ! i  ~i,~~~;;:~ ~,;,~ 
r 

I reproductive process I 

~ d e v e l o p m e n t a l  process~-,iiii! ) ~ : ~ i ( ! ,  i.i ) 
r 

Phylogeny 

~-~ Ontogeny 

Fig. 4. The embryonic process in Nature: An interplay between phylogeny and on- 
togeny. 

Research into self-reproducing machines, inspired by the ontogeny of living 
beings, began with von Neumann in the late 1940s. This line of research can be 
divided into five stages, placed along the ontogenetic axis (Figure 5): 

1. Von Neumann [64] and his successors Banks [3], Burks [5], and Codd [8] 
developed self-reproducing automata capable of universal computation (i.e., 
able to simulate a universal Turing machine [29]) and of universal construc- 
tion (i.e., able to construct any automaton described by an artificial genome). 
Unfortunately, the complexity of these automata is such that no physical im- 
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plementation has yet been possible, and only partial simulations have been 
carried out to date. 

2. Langton [34] and his successors Byl [6], Reggia et al. [52], and Morita et al. 
[45] developed self-reproducing automata which are much simpler and which 
have been simulated in their entirety. These machines, however, lack any 
computing and constructing capabilities, their sole functionality being that 
of self-reproduction. 

3. Tempesti [59], and Perrier et al. [49] developed self-reproducing automata 
inspired by Langton's work, yet endowed with finite ([59]) or universal ([49]) 
computational capabilities. 

In biological terms, a cell can be defined as the smallest part of a living being 
which carries the complete plan of the being, that is its genome [39]. In this 
respect, the above self-reproducing automata are unicellular organisms: there 
is a single genome describing (and contained within) the entire machine; their 
reproduction is then analogous to the asexual reproduction of unicellular 
living beings. 

4. Mange et al. [36, 38, 39] and Marchal et al. [40] proposed a new architec- 
ture called embryonics, or embryonic electronics. Based on three features 
usually associated with the ontogenetic process in living organisms, namely 
multiceUular organization, cellular differentiation, and cellular division, they 
introduced a new cellular automaton, complex enough for universal com- 
putation, yet simple enough for a physical implementation through the use 
of commercially available digital circuits; in addition to self-reproduction, 
this multicellular "organism" also exhibits self-repair capabilities, another 
biologically-inspired phenomenon. In order to embed universal construction, 
they are designing the basic cell with a molecular organization, similar to 
that of the transcription-translation mechanism (ribosome) [37]. These self- 
reproducing machines are clearly multicellular artificial organisms, in the 
sense that each of the several cells comprising the organism contains one 
copy of the complete genome; their reproduction is analogous to that of 
asexual multicellular living beings (as in the budding process of the hydra, 
described by [65]). 

All the above machines axe characterized by an asexual reproductive process; 
the genome is therefore haploid. 

5. The use of a diploid genome was discussed by [22], and more recently by 
[27]. This idea, coupled with the recombination of genetic material from two 
parents, could be introduced within the embryonics framework, representing 
an ultimate phase with respect to reproducing machines. 

4 Epigenesis: Learning through interactions with an 
environment 

To the best of our knowledge, there exist three major epigenetic systems in liv- 
ing multicellular organisms: the nervous system, the immune system and the 
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endocrine system, the first two having already served as inspiration for engi- 
neers. The nervous system has received the most attention, giving rise to the 
field of artificial neural networks; this will be the focus of our discussion below. 
The immune system has inspired systems for detecting software errors [66], as 
well as immune systems for computers [30]. Immunity of living organisms is a 
major domain of biology; it has been demonstrated that the immune system is 
capable of learning, recognizing, and, above all, eliminating foreign bodies which 
continuously invade the organism. Moreover, when viewed from the engineering 
standpoint, it is most interesting that immunity is maintained when faced with 
a dynamically changing environment. This feature leads us to surmise that the 
immune system, if implemented as an engineering model, can provide a new tool 
suitable for confronting dynamic problems, involving unknown, possibly hostile, 
environments. 

The nervous system remains the most popular epigenetic model used by en- 
gineers. From a biological point of view, it has been determined that the genome 
contains the formation rules that specify the outline of the nervous system [9, 10]. 
It is primarily the synapses, the zones of contact between two neurons, where 
learning takes place, through interactions with the environment during the or- 
ganism's lifetime. The nervous system of living beings thus represents a mixture 
of the innate and the acquired, the latter precluding the possibility of its hered- 
itary transmission. 

Artificial neural networks have been implemented many times over, mostly 
in software rather than in hardware, though only the latter concerns us here. 
Online learning is essential if one wishes to obtain learning systems as opposed 
to merely learned ones; such systems must learn rapidly from examples with 
no external guidance. Thus, while neural-network hardware had appeared al- 
ready in the 1980s [1, 23], only today are we seeing the birth of the technol- 
ogy that enables true online learning. From a hardware point of view, it seems 
that the possibilities of using memory to retain training examples [53], and the 
use of adaptable connectivity structures have been widely under-explored; this 
can be due to the lack of appropriate technology. FPGAs have been used to 
implement neural networks with a dynamically reconfigurable structure, where 
neurons and connections may be added or removed, in accordance with environ- 
mental changes; this increases the online learning capabilities of the network, 
coupled with high-speed, parallel operation [47, 48]. The work of [44] has also 
investigated the possibility of restructuring the network, online. Another re- 
cent system of interest is that of Field-Programmable Interconnection Circuits 
(FPICs), which can be used in conjunction with FPGAs to further improve the 
network's online capabilities. 

Other interesting paths are those that combine two or three axes of the POE 
model, as discussed in Section 5. 
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5 Conclusions: Softening hardware by combining 
phylogeny, ontogeny, and epigenesis 

We presented the POE model for classifying soft hardware, based on three axes 
found in nature: phylogeny, ontogeny, and epigenesis (Figure 1). It is relatively 
straightforward to place the works presented at ICES'96 along these axes (Fig- 
ure 6). Taking a look at the results obtained to date reveals a particular emphasis 
on the phylogenetic axis (fifteen papers, among which six concern offiine evolu- 
tion and nine concern partially or fully online evolution). This conforms with the 
prime theme of the conference, namely evolvable hardware. The epigenetic axis 
exhibits seven works on neuronal hardware, which can be grouped into three 
groups: brainware, learning and control processors for autonomous robots, and 
artificial neural networks. Finally, the ontogenetic axis is represented by two 
works concerning uni and multicellular, self-reproducing hardware. In addition, 
there are a number of overview papers, as well as works concerning specialized 
hardware systems. 

A natural extension which suggests itself is the combination of two, and ulti- 
mately all three axes, in order to attain novel bio-inspired hardware (Figure 7). 
As examples we propose: 

�9 The PO plane. This involves self-reproducing, evolving hardware, situated 
in the phylogenetic-ontogenetic plane. For example, [57, 58] have co-evolved 
non-uniform cellular automata to act as random number generators; [36] 
have shown that such evolved generators can be implemented by a multi- 
cellular automaton that exhibits self-reproduction and self-repair. Thus, the 
eventual combination of these two projects can be considered to be in the 
phylogenetic-ontogenetic plane. 

�9 The PE plane. The architecture of the brain is the result of a long evolution- 
ary process, during which a large set of specialized subsystems interactively 
emerged, carrying out tasks necessary for survival and reproduction [19]. 
Learning (epigenesis) in biological neural systems can be considered to serve 
as a mechanism for fine-tuning these broadly laid out neural circuits [24]. Al- 
though it is impossible that the genes code all structural information about 
the brain (Section 1), they may be the ultimate determinant of what it can 
and cannot learn [7]. 
The idea of evolutionary, artificial neural networks, situated in the PE plane, 
has received attention in recent years; this involves a population of neural 
networks, where evolution takes place at the global (population) level, with 
learning taking place at the individual (neural network) level. Examples are 
the works of [35, 46, 68], though they are currently completely offiine. The 
work of [14, 20] can also be situated in the PE plane, with a partially-online 
implementation; epigenetic learning takes place online, with the phylogenetic 
(population) existing offline. 

�9 The OF, plane. According to selectionism (e.g., [15]), selective pressures op- 
erate on epigenetic variation during the ontogeny of the individual (in "so- 
matic" time), not on a phylogenetic time scale [50]. This suggests the pos- 
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Fig. 6. Placing the works presented at the ICES'96 conference within the POE frame- 
work. 

sibility of combining the ontogenetic mechanisms discussed above, with the 
epigenetic (neural network) learning algorithms. 

Inductive learning can be interpreted as the capability to infer a response 
to an unknown situation, achieved through generalizing from previously- 
encountered, known situations. Engineers are perpetually confronted with a 
trade-off between generalization and robustness; while adding a multitude 
of neurons increases the system's fault tolerance, there is a risk of "learn- 
ing nothing", if we do not attempt to generalize [53]. Implementing neu- 
rons in hardware is generally quite expensive, so it is imperative that cost- 
effectiveness be considered, trying to obtain the smallest possible network. 
Once a good generalization is obtained (with respect to a certain problem or 
situation), fault tolerance can be achieved through other self-repair mecha- 
nisms, e.g., those used by the embryonics system. 

�9 The POE space. The development of an artificial neural network (epigenetic 
axis), implemented on a self-reproducing multicellular automaton (ontoge- 



50 

Phylogeny (P) 

 . Poh rware 
PE hardware E hardware 

~- Ontogeny (O) 

~ , ~ _  _ _ X OE hardware 

Epigenesis (E) 

Fig. 7. Combining POE axes in order to create novel bio-inspired systems. 

netic axis), whose genome is subject to evolution (phylogenetic axis), con- 
stitutes an ultimate example situated in the POE space (Figure 7). 

As a final remark we note that  the systems considered in this paper are bio- 
inspired; this means that,  while motivated by our observations of Nature, we do 
not have to strictly adhere to its solutions. As an example, consider the issue of 
Lamarckian evolution, which involves the direct inheritance of acquired charac- 
teristics. While the biological theory of evolution has shifted from Lamarckism to 
Darwinism, this does not preclude the use of artificial Lamarckian evolution [16]. 
Another example concerns the time scales of natural processes, where phyloge- 
netic changes occur at much slower rates than either ontogenetic or epigenetic 
ones, a characteristic which need not necessarily hold in our case. Thus, "devia- 
tions" from what is strictly natural may definitely be of use in our bio-inspired 
systems. 

Looking (and dreaming) toward the future, one can imagine nano-scale (bioware) 
systems becoming a reality, which will be endowed with evolutionary, self-reproducing, 
self-repairing, and neural capabilities; such systems could give rise to novel 
species which will coexist along with carbon-based living beings. 

This constitutes, perhaps, our ultimate challenge. 
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