Phylogeny, Ontogeny, and Epigenesis:
Three Sources of Biological Inspiration for
Softening Hardware

Eduardo Sanchez, Daniel Mange, Moshe Sipper, Marco Tomassini,
Andres Perez-Uribe, and André Stauffer

Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens,
CH-1015 Lausanne, Switzerland. E-mail: {Name.Surname}@di.epfl.ch

Abstract. Living beings are complex systems exhibiting a range of de-
sirable qualifications that have eluded realization by traditional engineer-
ing methodologies. In recent years we are witness to a growing interest in
Nature exhibited by engineers, wishing to imitate the observed processes,
thereby creating powerful problem-solving methodologies. If one consid-
ers Life on earth since its very beginning, three levels of organization can
be distinguished: the phylogenetic level concerns the temporal evolution
of the genetic programs within individuals and species, the ontogenetic
level concerns the developmental process of a single multicellular organ-
ism, and the epigenetic level concerns the learning processes during an
individual organism’s lifetime. In analogy to Nature, the space of bio-
inspired systems can be partitioned along these three axes, phylogeny,
ontogeny, and epigenesis, giving rise to the POE model. This paper is
an exposition and examination of bio-inspired systems within the POE
framework. We first discuss each of the three axes separately, consid-
ering the systems created to date and plotting directions for continued
progress along the axis in question. We end our exposition by a discussion
of possible research directions, involving the construction of bio-inspired
systems that are situated along two, and ultimately all three axes. This
presents a vision for the future which will see the advent of novel systems,
inspired by the powerful examples provided by Nature.

1 Introduction: Biological inspiration as a bridge from
the natural sciences to engineering

Traditionally, the development of the engineering disciplines (civil, electrical,
computer engineering, etc’) and that of the natural sciences (physics, chemistry,
biology, etc’) have proceeded along separate tracks. The natural scientist is a
detective: faced with the mysteries of nature, such as meteorological phenomena,
chemical reactions, and the development of living beings, he seeks to analyze
existing processes, to explain their operation, to model them, and to predict their
future behavior. The engineer, on the other hand, is a builder: faced with social
and economic needs, he tries to create artificial systems (bridges, cars, electronic
devices) based on a set of specifications (a description) and a set of primitives
(elementary components such as bricks, beams, wires, motors, transistors).

36

These two major branches of human endeavor have been drawing closer to-
gether during the past decades. It is nowadays common for scientists to use tools
created by engineers; to cite one example of many, we are witness to the system-
atic use of electronics in the medical world for such tasks as decoding the human
genome, visually representing highly complex chemical molecules, computerized
tomography, and so on.

More recently, engineers have been allured by certain natural processes, giv-
ing birth to such thriving domains as artificial neural networks and evolution-
ary algorithms. Living beings are complex systems exhibiting a range of desir-
able qualifications, such as evolution, adaptation, and fault tolerance, that have
proved difficult to realize using traditional engineering methodologies. Such sys-
tems are characterized by a genetic program, the genome, that defines their
development, their functioning and their extinction. If one considers Life on
earth since its very beginning, then the following three levels of organization can
be distinguished [9, 10]:

Phylogeny The first level concerns the temporal evolution of the genetic pro-
gram, the hallmark of which is the evolution of species, or phylogeny. The
“multiplication” of living beings is based upon the reproduction of the pro-
gram, subject to an extremely low error rate at the individual level, so as
to insure that the identity of the offspring remains practically unchanged;
this error rate is higher at the group or species level [43]. It is precisely these
copying errors, due to mutation (asexual reproduction) or mutation along
with recombination (sexual reproduction), that gives rise to the emergence of
novel species or new organisms. The phylogenetic mechanisms are fundamen-
tally non-deterministic, with the mutation and recombination rate providing
a major source of diversity; this diversity is indispensable for the survival of
living species, for their continuous adaptation to a changing environment,
and for the appearance of new species.

Ontogeny Upon the appearance of multicellular organisms, a second level of bi-
ological organization manifests itself. The successive divisions of the mother
cell, the zygote, with each newly formed cell possessing a copy of the orig-
inal genome, is followed by a specialization of the daughter cells in accor-
dance with their environment, i.e., their position within the ensemble; this
latter phase is known as cellular differentiation. Ontogeny is therefore the
developmental process of a multicellular organism; this process is essentially
deterministic: an error in a single base within the genome can provoke an on-
togenetic sequence which results in notable, possibly lethal, malformations.

Epigenesis The ontogenetic program is limited in the amount of information
that can be stored, thereby rendering the complete specification of the or-
ganism impossible. A well-known example is that of the human brain with
some 1010 neurons and 10'# connections, far too large a number to be com-
pletely specified in the four-character genome of length 3 x 10°. Therefore,
upon reaching a certain level of complexity, there must emerge a different
process that permits the individual organism to integrate the vast quantity
of interactions with the outside world. This process is known as epigenesis,

37

and primarily includes the nervous system, the immune system and the en-
docrine system. These systems are characterized by the possession of a basic
structure that is entirely defined by the genome (the innate part), which is
then subjected to modification through interactions of the individual with
the environment (the acquired part). The epigenetic processes can be loosely
grouped under the heading of learning systems.

In analogy to Nature, the space of bio-inspired systems can be partitioned
along these three axes: phylogeny, ontogeny, and epigenesis; we refer to this as the
POE model (Figure 1). As an example, consider the following three paradigms,
each of which is positioned along one axis: (P) evolutionary algorithms are the
(simplified) artificial counterpart of phylogeny in Nature; (O) self-reproducing
automata are based on the concept of ontogeny, where a single mother cell gives
rise, through multiple divisions, to a multicellular organism; (E) artificial neural
networks embody the epigenetic process, where the system’s synaptic weights
and perhaps topological structure change through interactions with the envi-
ronment. Within the domains collectively referred to as soft computing [67],
characterized by ill-defined problems coupled with the need for continual adap-
tation or evolution, the above paradigms yield impressive results, rivaling those
of traditional methods.

Phylogeny (P)

Ontogeny (O)

Epigenesis (E)

Fig. 1. The POE model. Partitioning the space of bio-inspired systems along three
axes: phylogeny, ontogeny, and epigenesis.

Our goal in this paper is to introduce the basics of bio-inspired systems along
each of the three axes; due to space restrictions, and in following the main theme
of the conference, we shall concentrate on the phylogenetic axis (Section 2). In
Section 3 we present a brief account of the ontogenetic axis, considering the role
of self-reproduction within the scheme of bio-inspired systems. Section 4 con-
siders the third axis, namely epigenesis. Qur paper ends in Section 5 with our
conclusions and directions for future research, based on the POE model; specif-
ically, we shall consider the possibilities of combining two axes, along with the

38

ultimate goal of combining all three. This presents a vision for the future which
will see the construction of novel systems, inspired by the powerful examples
provided by Nature.

2 The phylogenetic axis: Evolvable hardware

2.1 Artificial evolution

The idea of applying the biological principle of natural evolution to artificial
systems, introduced more than three decades ago, has seen an impressive growth
in the past few years. Usually grouped under the term evolutionary algorithms or
evolutionary computation, we find the domains of genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming [2, 17, 22, 28,
32, 41, 42, 56]. As a generic example of artificial evolution, we consider genetic
algorithms, originally invented by John Holland in the 1960s [28].1

A genetic algorithim is an iterative procedure that consists of a constant-size
population of individuals, each one represented by a finite string of symbols,
known as the genome, encoding a possible solution in a given problem space.
This space, referred to as the search space, comprises all possible solutions to
the problem at hand; generally speaking, the genetic algorithm is applied to
spaces which are too large to be exhaustively searched. The symbol alphabet
used is often binary due to certain computational advantages purported in [2§]
(see also [22]); this has been extended in recent years to include character-based
encodings, real-valued encodings, and tree representations.

The standard genetic algorithm proceeds as follows [63}: an initial population
of individuals is generated at random or heuristically. Every evolutionary step,
known as a generation, the individuals in the current population are decoded
and evaluated according to some predefined quality criterion, referred to as the
fitness, or fitness function. To form a new population (the next generation),
individuals are selected according to their fitness, by using a given selection
procedure. Selection alone cannot introduce any new individuals into the popu-
lation, i.e., it cannot find new points in the search space; these are generated by
genetically-inspired operators, of which the most well-known are crossover and
mutation. Crossover is performed with probability peress (the “crossover proba-
bility” or “crossover rate”) between two selected individuals, called parents, by
exchanging parts of their genomes (i.e., encodings) to form two new individuals,
called offspring; in its simplest form, substrings are exchanged after a randomly
selected crossover point. This operator enables the evolutionary process to move
toward “promising” regions of the search space. The mutation operator is intro-
duced to prevent premature convergence to local optima by randomly sampling
new points in the search space. It is carried out by flipping bits at random, with
some (small) probability pp,.:. Genetic algorithms are stochastic iterative pro-
cesses that are not guaranteed to converge; the termination condition may be

! For the purposes of this presentation, the differences with other evolutionary algo-
rithms are inconsequential.

39

specified as some fixed, maximal number of generations or as the attainment of
an acceptable fitness level.

Evolutionary algorithms are ubiquitous nowadays, having been successfully
applied to numerous problems from different domains, including optimization,
automatic programming, machine learning, economics, immune systems, ecology,
population genetics, studies of evolution and learning, and social systems [42].
For recent reviews of the current state of the art, the reader is referred to [62, 63].

2.2 Large scale programmable circuits

An integrated circuit is called programmable when the user can configure its
function by programming. The circuit is delivered after manufacturing in a
generic state and the user can adapt it by programming a particular function;
the programmed function is coded as a string of bits representing the configura-
tion of the circuit. In this paper we consider solely programmable logic circuits,
where the programmable function is a logic one, ranging from simple boolean
functions to complex state machines.

The first programmable circuits allowed the implementation of logic cir-
cuits that were expressed as a logic sum of products; these are the PLDs (Pro-
grammable Logic Devices), whose most popular version is the PAL (Programmable
Array Logic). More recently a new player has appeared on the scene, affording
higher flexibility and more complex functionality: the Field-Programmable Gate
Array (FPGA) [54]. An FPGA is an array of logic cells placed in an infrastruc-
ture of interconnections (Figure 2), which can be programmed at three distinct
levels: (1) the function of the logic cell; (2) the interconnections between cells;
(3) the input and outputs. All three levels are programmed via a string of bits
that is loaded from an external source, either once or several times; in the latter
case the FPGA is considered reconfigurable.

FPGAs are highly versatile devices that offer the designer a wide range of
design choices. However, this potential power necessitates a plethora of tools in
order to design a system; essentially, these generate the configuration bit string
upon given such inputs as a logic schema or a high-level functional description.

2.3 Evolvable hardware: The present

If one carefully examines the work carried out to date under the heading ‘evolv-
able hardware’, it becomes evident that this mostly involves the application of
evolutionary algorithms to the synthesis of digital systems [55] (recently, Koza
has studied analog systems as well [33]). Taking this point of view, evolvable
hardware is simply a sub-domain of artificial evolution, where the final goal
is the synthesis of an electronic circuit. The work of [32], where genetic pro-
gramrming was applied to the evolution of a three-variable multiplexer, may be
considered an early precursor along this line; it should be noted that at the time
the main goal was that of demonstrating the capabilities of the genetic program-
ming methodology, rather than designing actual circuits. We argue that the term
Evolutionary Circuit Design would be more descriptive of such work than that

40

programmable programmable
interconnections functions
configuration

EENEN
X

logic cell /O cell
Fig. 2. A schematic diagram of a Field-Programmable Gate Array (FPGA).

of ‘evolvable hardware’. For now, we shall remain with the latter (popular) term,
however, we shall return to the issue of clarifying definitions in Section 2.5.

Taken as a design methodology, evolvable hardware offers a major advantage
over classical methods; the designer’s job is reduced to that of specifying the cir-
cuit requirements and the basic elements, whereupon evolution “takes over” to
“design” the circuit. Currently, most evolved digital designs are sub-optimal with
respect to traditional methodologies, however, improved results are continuously
attained. Examining work carried out to date, one can derive a rough classifi-
cation of current evolvable hardware, in accordance with the genome encoding
(i-e., the circuit description), and the calculation of a circuit’s fitness.

Genome encoding

o High-level languages. The first works carried out used a high-level functional
language to encode the circuits in question, a representation far-removed
from the structural (schematic) description. In [32], the evolved solution is a
program describing the (desired) multiplexer rather than an interconnection
schema of logic elements (the actual hardware representation). The work of
[25] uses a high-level hardware language to represent the genomes. [31, 33]
used the rewriting operation, in addition to crossover and mutation, in order
to enable the formation of a hierarchical structure; this is still within the
framework of a high-level language.

o Low-level languages. The idea of directly incorporating within the genome
the bit string representing the configuration of a programmable circuit was

41

expressed early on by [13], though without demonstrating its actual imple-
mentation. As a first step one must choose the basic logic gates (e.g., AND,
OR, and NOT), and suitably codify them, along with the interconnections
between gates, to produce the genome encoding. An example of this ap-
proach is the work of [61]. [26] used a low-level bit string representation of
the system’s logic schema to describe small-scale PALs, where the circuit
is restricted to a logic sum of products. The limitations of the PAL circuits
have been overcome to a large extent by the introduction of FPGAs, as used,
e.g., by [60].

The use of a low-level circuit description that requires no further transfor-
mation is an important step forward since this potentially enables placing
the genome directly in the actual circuit, thus paving the way toward truly
evolvable hardware. However, up until recently, FPGAs had introduced their
own share of problems: (1) the genome’s length was on the order of tens of
thousands of bits, rendering evolution practically impossible using current
technology; (2) one still had to extend the genome into a logic schema,
a phase for which automatic methods do not exist; (3) within the circuit
“space”, consisting of all representable circuits, a large number were invalid
(e.g., containing short circuits).

With the introduction of the new family of FPGAs, the Xilinx 6200, these
problems have been attenuated [60]. As with previous FPGA families, there
is a direct correspondence between the bit string of a cell and the actual
logic circuit, however, this now always leads to a viable system. Moreover,
as opposed to previous FPGAs where one had to configure the entire system,
the new family permits the separate configuration of each cell, a markedly
faster and more flexible process. [60] has employed this latter characteristic
to reduce the genome’s size, without, however, introducing real-time, partial
system reconfigurations.

Fitness calculation

e Offline evolvable hardware. The use of a high-level language for the genome
representation means that one has to transform the encoded system in order
to evaluate its fitness. This is carried out by simulation, with only the final
solution found by evolution actually implemented in hardware. This form of
simulated evolution is known as offline evolvable hardware [55].

e Online evolvable hardware. As noted above, the low-level genome represen-
tation enables a direct configuration (and reconfiguration) of the circuit,
thus entailing the possibility of using real hardware during the evolutionary
process; this has been called online evolution by some of the works found in
[55].

2.4 Common features of current phylogenetic hardware

Examining work carried out to date we find a number of common character-
istics that span both online and offline systems, often differing from biological
evolution:2

2 This is not necessarily disparaging, as discussed in Section 5.

42

o Evolution pursues a predefined goal: the design of an electronic circuit, sub-
ject to precise specifications; upon finding the desired circuit, the evolution-
ary process terminates.

¢ The population has no material existence; at best, in what has been called
online evolution, there is one circuit available, onto which individuals from
the (offline) population are loaded one at a time, in order to evaluate their
fitness.

o The absence of a real population in which individuals coexist simultane-
ously entails notable difficulties in the realization of interactions between
“organisms”. This results in a completely local fitness calculation, contrary
to nature which exhibits a co-evolutionary scenario.

o If one attempts to resolve a well-defined problem, involving the search for a
specific combinatorial or sequential logic system, there are no intermediate
approximations; fitness calculation is carried out by consulting a lookup
table which is a complete description of the circuit in question. This casts
some doubts into the utility of using an evolutionary process, since one can
directly implement the lookup table in a memory device, a solution which
may often be faster and cheaper.

¢ The evolutionary mechanisms are carried out outside the resulting circuit.
This includes the genetic operators (selection, crossover, mutation) as well
as fitness calculation. As for the latter, while what is currently advanced as
online evolution uses a real circuit for fitness evaluation, the fitness values
themselves are stored elsewhere.

e The different phases of evolution are carried out sequentially, controlled by
a central software unit.

2.5 Evolvable hardware: A look ahead along the phylogenetic axis

The phylogenetic axis admits a number of qualitative sub-divisions (Figure 3):

e At the bottom of this axis, we find what is in essence evolutionary circuit
design, where all operations are carried out in software, with the resulting so-
lution possibly loaded onto a real circuit. Though a potentially useful design
methodology, this falls completely within the realm of traditional evolution-
ary techniques. As examples one can cite the works of {25, 26, 31, 33].

¢ Moving upward along the axis, one finds works in which a real circuit is used
during the evolutionary process, though most operations are still carried out
offline, in software. An example is the work of [60], where fitness calculation
is carried out on a real circuit. It is important to note that while this has
been referred to as online evolution, it would probably be more appropriate
to reserve this term for the next sub-division.

43

Phylogeny
A

All genetic operations carried out in hardware;
open-ended evolution

All genetic operations carried out in hardware;
not open-ended evolution

Real circuit;
most operations carried out in software

Evolutionary circuit design;
all operations carried out in software

()
£ c
cE
(o))

Fig. 3. The phylogenetic axis.

e Still further along the phylogenetic axis, one finds systems in which all ge-
netic operations (selection, crossover, mutation, fitness evaluation) are car-
ried out online, in hardware. The major aspect missing concerns the fact that
evolution is not open-ended, i.e., there is a predefined goal and no dynamic
environment so to speak of. An example is the work of [21].

e This represents the top of the phylogenetic axis, where a population of hard-
ware entities evolves in an open-ended environment.

We argue that only the last category can be truly considered evolvable hard-
ware, a goal which still eludes us at present. A natural application area for such
systems is within the field of autonomous robots, which involves machines ca-
pable of operating in unknown environments without human intervention [4].
Another interesting example would be what we call “Hard-Tierra”; this involves
the hardware implementation of the Tierra “world” [51], which consists of an
open-ended environment of evolving computer programs. A small-scale experi-
ment along this line was undertaken in [18]. The idea of Hard-Tierra is important
since it demonstrates that ‘open-endedness’ does not necessarily imply a real,
biological environment.

3 Ontogeny and self-reproducing hardware

The fundamental principle of embryology in real life is illustrated in Figure 4
(based on [11, 12]) which covers a period of two generations preceded and fol-
lowed by an indefinite number of generations. The first condition is that there

44

must be replicators, entities capable, like DNA molecules, of self-replication. The
second condition is our main concern: there must be an embryonic process. The
genome should influence the development of the external characteristics of the
being, the phenotype; and the replicators must be able to wield some phenotypic
power over their world, such that some of them are more successful at replicating
themselves than others (this point is crucial for the phylogenetic process). It is
important to understand that genes, the basic constituents of the genome, act on
two quite different levels: they participate in the embryonic process, influencing
the development of the phenotype in a given generation, and they participate
in genetics, having themselves copied down the generations (reproduction). This
is epitomized by an empirical separation between the disciplines of genetics and
embryology; genetics is the study of the vertical arrows in Figure 4, i.e., the
relationship between genotypes in successive generations, while embryology is
the study of the horizontal arrows, i.e., the relationship between genotype and
phenotype in any one generation [12].

developmental process

[reproductive process J

Phylogeny

L—b Ontogeny

Fig. 4. The embryonic process in Nature: An interplay between phylogeny and on-
togeny.

Research into self-reproducing machines, inspired by the ontogeny of living
beings, began with von Neumann in the late 1940s. This line of research can be
divided into five stages, placed along the ontogenetic axis (Figure 5):

1. Von Neumann [64] and his successors Banks [3], Burks [5}, and Codd [8]
developed self-reproducing automata capable of universal computation (i.e.,
able to simulate a universal Turing machine [29]) and of universal construc-
tion (i.e., able to construct any automaton described by an artificial genome).
Unfortunately, the complexity of these automata is such that no physical im-

45

plementation has yet been possible, and only partial simulations have been
carried out to date.

2. Langton [34] and his successors Byl [6], Reggia et al. [52], and Morita et al.
[45] developed self-reproducing automata which are much simpler and which
have been simulated in their entirety. These machines, however, lack any
computing and constructing capabilities, their sole functionality being that
of self-reproduction.

3. Tempesti [59], and Perrier et al. [49] developed self-reproducing automata
inspired by Langton’s work, yet endowed with finite ([59]) or universal ([49])
computational capabilities.

In biological terms, a cell can be defined as the smallest part of a living being
which carries the complete plan of the being, that is its genome [39]. In this
respect, the above self-reproducing automata are unicellular organisms: there
is a single genome describing (and contained within) the entire machine; their
reproduction is then analogous to the asexual reproduction of unicellular
living beings.

4. Mange et al. [36, 38, 39] and Marchal et al. [40] proposed a new architec-
ture called embryonics, or embryonic electronics. Based on three features
usually associated with the ontogenetic process in living organisms, namely
multicellular organization, cellular differentiation, and cellular division, they
introduced a new cellular automaton, complex enough for universal com-
putation, yet simple enough for a physical implementation through the use
of commercially available digital circuits; in addition to self-reproduction,
this multicellular “organism” also exhibits self-repair capabilities, another
biologically-inspired phenomenon. In order to embed universal construction,
they are designing the basic cell with a molecular organization, similar to
that of the transcription-translation mechanism (ribosome) [37]. These self-
reproducing machines are clearly multicellular artificial organisms, in the
sense that each of the several cells comprising the organism contains one
copy of the complete genome; their reproduction is analogous to that of
asexual multicellular living beings (as in the budding process of the hydra,
described by [65]).

All the above machines are characterized by an asexual reproductive process;
the genome is therefore haploid.

5. The use of a diploid genome was discussed by [22], and more recently by
[27]. This idea, coupled with the recombination of genetic material from two
parents, could be introduced within the embryonics framework, representing
an ultimate phase with respect to reproducing machines.

4 Epigenesis: Learning through interactions with an
environment

To the best of our knowledge, there exist three major epigenetic systems in liv-
ing multicellular organisms: the nervous system, the immune system and the

46

"sixe o1jeusfojuo ayJ, g “Sig

!
sojuofiquie [eie { ele el sioyiny
Jo euniny sojuoliquig Jouied ! psedwe) uo)buen UUBWNGN UOA sebeig
< (S) v) (€) _ (€) (2) (1)

(euiyoew ejels eyuy) uoneindwod syul4
AuebojuQ 10
(euiyoews Buln | jesieAlun) uoleINAWIOD [BSIBAIN

UOIONIISUOD [BSISAIUN

lojAeyeq eujjuo ‘iedsi-jeg

cozmﬁcmm_o Lm_:__mu_ca

:o_.mN_cmm_o a_:__mo:_:s_

{ewcusb pjojdey) uononpoidel jenxesy
o

(ewoueb piojdip) uononpoide: [enxesg

47

endocrine system, the first two having already served as inspiration for engi-
neers. The nervous system has received the most attention, giving rise to the
field of artificial neural networks; this will be the focus of our discussion below.
The immune system has inspired systems for detecting software errors [66], as
well as immune systems for computers [30]. Immunity of living organisms is a
major domain of biology; it has been demonstrated that the immune system is
capable of learning, recognizing, and, above all, eliminating foreign bodies which
continuously invade the organism. Moreover, when viewed from the engineering
standpoint, it is most interesting that immunity is maintained when faced with
a dynamically changing environment. This feature leads us to surmise that the
immune system, if implemented as an engineering model, can provide a new tool
suitable for confronting dynamic problems, involving unknown, possibly hostile,
environments.

The nervous system remains the most popular epigenetic model used by en-
gineers. From a biological point of view, it has been determined that the genome
contains the formation rules that specify the outline of the nervous system [9, 10].
1t is primarily the synapses, the zones of contact between two neurons, where
learning takes place, through interactions with the environment during the or-
ganism’s lifetime. The nervous system of living beings thus represents a mixture
of the innate and the acquired, the latter precluding the possibility of its hered-
itary transmission.

Artificial neural networks have been implemented many times over, mostly
in software rather than in hardware, though only the latter concerns us here.
Online learning is essential if one wishes to obtain learning systems as opposed
to merely learned ones; such systems must learn rapidly from examples with
no external guidance. Thus, while neural-network hardware had appeared al-
ready in the 1980s [1, 23], only today are we seeing the birth of the technol-
ogy that enables true online learning. From a hardware point of view, it seems
that the possibilities of using memory to retain training examples [53], and the
use of adaptable connectivity structures have been widely under-explored; this
can be due to the lack of appropriate technology. FPGAs have been used to
implement neural networks with a dynamically reconfigurable structure, where
neurons and connections may be added or removed, in accordance with environ-
mental changes; this increases the online learning capabilities of the network,
coupled with high-speed, parallel operation [47, 48]. The work of [44] has also
investigated the possibility of restructuring the network, online. Another re-
cent system of interest is that of Field-Programmable Interconnection Circuits
(FPICs), which can be used in conjunction with FPGAs to further improve the
network’s online capabilities.

Other interesting paths are those that combine two or three axes of the POE
model, as discussed in Section 5.

48

5 Conclusions: Softening hardware by combining
phylogeny, ontogeny, and epigenesis

We presented the POE model for classifying soft hardware, based on three axes
found in nature: phylogeny, ontogeny, and epigenesis (Figure 1). It is relatively
straightforward to place the works presented at ICES’96 along these axes (Fig-
ure 6). Taking a look at the results obtained to date reveals a particular emphasis
on the phylogenetic axis (fifteen papers, among which six concern offline evolu-
tion and nine concern partially or fully online evolution). This conforms with the
prime theme of the conference, namely evolvable hardware. The epigenetic axis
exhibits seven works on neuronal hardware, which can be grouped into three
groups: brainware, learning and control processors for autonomous robots, and
artificial neural networks. Finally, the ontogenetic axis is represented by two
works concerning uni and multicellular, self-reproducing hardware. In addition,
there are a number of overview papers, as well as works concerning specialized
hardware systems.

A natural extension which suggests itself is the combination of two, and ulti-
mately all three axes, in order to attain novel bio-inspired hardware (Figure 7).
As examples we propose:

e The PO plane. This involves self-reproducing, evolving hardware, situated
in the phylogenetic-ontogenetic plane. For example, [57, 58] have co-evolved
non-uniform cellular automata to act as random number generators; [36]
have shown that such evolved generators can be implemented by a multi-
cellular automaton that exhibits self-reproduction and self-repair. Thus, the
eventual combination of these two projects can be considered to be in the
phylogenetic-ontogenetic plane.

o The PE plane. The architecture of the brain is the result of a long evolution-

ary process, during which a large set of specialized subsystems interactively
emerged, carrying out tasks necessary for survival and reproduction [19].
Learning (epigenesis) in biological neural systems can be considered to serve
as a mechanism for fine-tuning these broadly laid out neural circuits [24]. Al-
though it is impossible that the genes code all structural information about
the brain (Section 1), they may be the ultimate determinant of what it can
and cannot learn [7].
The idea of evolutionary, artificial neural networks, situated in the PE plane,
has received attention in recent years; this involves a population of neural
networks, where evolution takes place at the global (population) level, with
learning taking place at the individual (neural network) level. Examples are
the works of [35, 46, 68], though they are currently completely offline. The
work of [14, 20] can also be situated in the PE plane, with a partially-online
implementation; epigenetic learning takes place online, with the phylogenetic
(population) existing offline.

e The OE plane. According to selectionism (e.g., [15]), selective pressures op-
erate on epigenetic variation during the ontogeny of the individual (in “so-
matic” time), not on a phylogenetic time scale {50]. This suggests the pos-

49

Phylogeny (P)
A -
s K
=2 T9
- F L
Ts8 3233 §
o > gesE@E &
2oesbEg 8E
0|8552555588
EIOTXOIZZ22 0
=
S AR EEan
| _
S5 53
25 _ 85 ¢
93883
HHIE
£ BEELAN
5 | mm
,/
rd
I'd
7
Hardware
/
Krishnamoorthy [[iitano
McCaskill et al [B]{Bll Manderick et al
2 @ ,’ Shiratsuchi ER|EH Sanchez et al
58 R4 Bl vaoota Bl Morita et al Wl Nussbaum etal ont o
% 4 e Overview Unicellular Multicellutar P Ontogeny (0)
g,
- " Arnmstrong
oy Morishita et al‘ Neural networks
Aleksander
! toetal
Yamamoto et al ing p and autor robots

X

3

3

@
- -

Epigenesis (E)

Fig. 6. Placing the works presented at the ICES’96 conference within the POE frame-
work.

sibility of combining the ontogenetic mechanisms discussed above, with the
epigenetic (neural network) learning algorithms.

Inductive learning can be interpreted as the capability to infer a response
to an unknown situation, achieved through generalizing from previously-
encountered, known situations. Engineers are perpetually confronted with a
trade-off between generalization and robustness; while adding a multitude
of neurons increases the system’s fault tolerance, there is a risk of “learn-
ing nothing”, if we do not attempt to generalize [53]. Implementing neu-
rons in hardware is generally quite expensive, so it is imperative that cost-
effectiveness be considered, trying to obtain the smallest possible network.
Once a good generalization is obtained (with respect to a certain problem or
situation), fault tolerance can be achieved through other self-repair mecha-
nisms, e.g., those used by the embryonics system.

e The POE space. The development of an artificial neural network (epigenetic
axis), implemented on a self-reproducing multicellular automaton (ontoge-

50

Phylogeny (P)

L d
’

- _,. PO hardware
PE hardware " -

" PQE hardware
1 1
! 1

Ontogeny (O)

4

i Vs
/ __ . & OE hardware

1
L}
i
|
Epigenesis (E)

Fig. 7. Combining POE axes in order to create novel bio-inspired systems.

netic axis), whose genome is subject to evolution (phylogenetic axis), con-
stitutes an ultimate example situated in the POE space (Figure 7).

As a final remark we note that the systems considered in this paper are bio-
inspired; this means that, while motivated by our observations of Nature, we do
not have to strictly adhere to its solutions. As an example, consider the issue of
Lamarckian evolution, which involves the direct inheritance of acquired charac-
teristics. While the biological theory of evolution has shifted from Lamarckism to
Darwinism, this does not preclude the use of artificial Lamarckian evolution [16].
Another example concerns the time scales of natural processes, where phyloge-
netic changes occur at much slower rates than either ontogenetic or epigenetic
ones, a characteristic which need not necessarily hold in our case. Thus, “devia-
tions” from what is strictly natural may definitely be of use in our bio-inspired
systems.

Looking (and dreaming) toward the future, one can imagine nano-scale (bioware)
systems becoming a reality, which will be endowed with evolutionary, self-reproducing,
self-repairing, and neural capabilities; such systems could give rise to novel
species which will coexist along with carbon-based living beings.

This constitutes, perhaps, our ultimate challenge.

Acknowledgment

We are grateful to Antoine Danchin of the Pasteur Institute, Paris for his careful
reading of this manuscript and his many helpful remarks and suggestions.
References

1. L. E. Atlas and Y. Suzuki. Digital systems for artificial neural networks. IEEF
Circuits and Devices magazine, pages 20~24, November 1989.

(=

oo

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

51

T. Bick. Fvolutionary algorithms in theory and practice: evolution strategies, evo-
lutionary programming, genetic algorithms. Oxford University Press, New York,
1996.

E. R. Banks. Universality in cellular automata. In IEEE 11th Annual Symposium
on Switching and Automate Theory, pages 194-215, Santa Monica, California, Oc-
tober 1970.

. R. A. Brooks. New approaches to robotics. Science, 253(5025):1227-1232, Septem-

ber 1991,

. A. Burks, editor. Essays on cellular automata. University of Illinois Press, Urbana,

Tlinois, 1970.

. J. Byl. Self-reproduction in small cellular automata. Physica D, 34:295-299, 1989.
. J. Changeux and A. Danchin. Selective stabilisation of developing synapses as a

mechanism for the specification of neural networks. Nature, 264:705-712, 1976.

. E. F. Codd. Cellular Automata. Academic Press, New York, 1968.
. A. Danchin. A selective theory for the epigenetic specification of the monospe-

cific antibody production in single cell lines. Ann. Immunol. (Institut Pasteur),
127C:787-804, 1976.

A. Danchin. Stabilisation fonctionnelle et épigénése: une approche biologique de
la geneése de l'identité individuelle. In J. -M. Benoist, editor, L’dentité, pages
185-221. Grasset, 1977.

R. Dawkins. The Blind Watchmaker. W.W. Norton and Company, 1986.

R. Dawkins. The evolution of evolvability. In C. G. Langton, editor, Artificial Life,
volume VI of SFI Studies in the Sciences of Complexity, pages 201-220. Addison-
Wesley, 1989.

H. de Garis. Evolvable hardware: Genetic programming of a Darwin machine. In
R. F. Albrecht, C. R. Reeves, , and N. C. Steele, editors, Artificial Neural Nets and
Genetic Algorithms, pages 441-449, Berlin, 1993. Springer-Verlag.

H. de Garis. “Cam-Brain” ATR’s billion neuron artificial brain project: A three
year progress report. In Proceedings of IEEE Third International Conference on
Evolutionary Computation (ICEC’96), pages 886-891, 1996.

G. M. Edelman. Neural Darwinism: The Theory of Neuronal Group Selection.
Basic Books, New York, 1987.

J. D. Farmer and A. d’A. Belin. Artificial life: The coming evolution. In C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II,
volume X of SFI Studies in the Sciences of Complezity, pages 815-840, Redwood
City, CA, 1992. Addison-Wesley.

D. B. Fogel. Evolutionary computation: toward a new philosophy of machine in-
telligence. IEEE Press, Piscataway, NJ, 1995.

P. Galley and E. Sanchez. A hardware implementation of a Tierra processor. Un-
published internal report (in French), Logic Systems Laboratory, Swiss Federal
Institute of Technology, Lausanne, 1996.

M. S. Gazzaniga. Organization of the human brain. Science, 245:947-952, 1989.
F. Gers and H. de Garis. CAM-Brain: A new model for ATR’s cellular automata
based artificial brain project. In Proceedings of The First International Confer-
ence on Fuvolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, 1996.

M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, and M. Tomassini. On-
line autonomous evolware. In Proceedings of The First International Conference
on Ewvolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in Com-
puter Science. Springer-Verlag, Heidelberg, 1996.

22

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

52

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

H. P. Graf and L. D. Jackel. Analog electronic neural network circuits. IEEE
Clircuits and Devices magazine, pages 44-49, July 1989.

B. Happel and J. M. Murre. Design and evolution of modular neural network
architectures. Neural Networks, 7(6/7):985-1004, 1994.

H. Hemmi, J. Mizoguchi, and K. Shimohara. Development and evolution of hard-
ware behaviors. In E. Sanchez and M. Tomassini, editors, Towards Fvolvable Hard-
ware, volume 1062 of Lecture Notes in Computer Science, pages 250-265. Springer-
Verlag, Berlin, 1996.

T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, and B. Manderick.
Evolvable hardware and its application to pattern recognition and fault-tolerant
systems. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware,
volume 1062 of Lecture Notes in Computer Science, pages 118-135. Springer-
Verlag, Berlin, 1996.

T. Hikage, H. Hemmi, and K. Shimohara. Hardware evolution system: Introduc-
ing dominant and recessive heredity. In Proceedings of The First International
Conference on Evolvable Systems: from Biology to Hardware (ICES96), Lecture
Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

J. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan, 1975.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Languages and
Computation. Addison-Wesley, Redwood City, CA, 1979.

J. O. Kephart. A biologically inspired immune system for computers. In R. A.
Brooks and P. Maes, editors, Artificial Life IV, pages 130-139, Cambridge, Mas-
sachusetts, 1994. The MIT Press.

H. Kitano. Morphogenesis for evolvable systems. In E. Sanchez and M. Tomassini,
editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer
Science, pages 99-117. Springer-Verlag, Berlin, 1996.

J. R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts,
1992.

J. R. Koza, F. H Bennett III, D. Andre, and M. A. Keane. Automated WYWI-
WYG design of both the topology and component values of electrical circuits using
genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 123-131, Cambridge, MA, 1996. The MIT Press.

C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135-144,
1984.

Y. Liu and X. Yao. Evolutionary design of artificial neural networks with different
nodes. In Proceedings of IEEE Third International Conference on Evolutionary
Computation (ICEC’96), pages 670-675, 1996.

D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, and S. Durand. Em-
bryonics: A new family of coarse-grained field-programmable gate arrays with self-
repair and self-reproducing properties. In E. Sanchez and M. Tomassini, editors,
Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science,
pages 197-220. Springer-Verlag, Berlin, 1996. Also available as: Technical Report
95/154, Department of Computer Science, Swiss Federal Institute of Technology,
Lausanne, Switzerland, November, 1995.

D. Mange, D. Madon, A. Stauffer, and G. Tempesti. Von Neumann revisited: A
Turing machine with self-repair and self-reproduction properties. Technical Report

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

5l.

52.

53.

53

96/180, Department of Computer Science, Swiss Federal Institute of Technology,
Lausanne, Switzerland, March 1996. (submitted for publication).

D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, S. Durand, P. Marchal, and
C. Piguet. Embryonics: A new methodology for designing field-programmable gate
arrays with self-repair and self-reproducing properties. Technical Report 95/152,
Department of Computer Science, Swiss Federal Institute of Technology, Lausanne,
Switzerland, October 1995.

D. Mange and A. Stauffer. Introduction to embryonics: Towards new self-repairing
and self-reproducing hardware based on biological-like properties. In N. M. Thal-
mann and D. Thalmann, editors, Artificial Life and Virtual Reality, pages 61-72,
Chichester, England, 1994. John Wiley.

P. Marchal, C. Piguet, D. Mange, A. Stauffer, and S. Durand. Embryological de-
velopment on silicon. In R. A. Brooks and P. Maes, editors, Artificial Life IV,
pages 365-370, Cambridge, Massachusetts, 1994. The MIT Press.

Z. Michalewicz. Genetic algorithms + data structures = evolution programs.
Springer, Berlin, third edition, 1996.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
1996.

J. Monod. Chance And Necessity: An Essay On The Natural Philosophy Of Mod-
ern Biology. Vintage, New York, 1971.

J. M. Moreno. VLSI Architectures for Evolutive Neural Models. PhD thesis, Uni-
versitat Politecnica de Catalunya, Barcelona, 1994.

K. Morita and K. Imai. Logical universality and self-reproduction in reversible cel-
lular automata. In Proceedings of The First International Conference on Evolvable
Systems: from Biology to Hardware (ICES96), Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, 1996.

S. Nolfi, D. Parisi, and J. L. Elman. Learning and evolution in neural networks.
Adaptive Behavior, 3(1):5-28, 1994.

A. Perez and E. Sanchez. FPGA implementation of an adaptable-size neural net-
work. In C. von der Malsburg, W. von Seelen, J. C. Vorbriiggen, and B. Sendhoff,
editors, Proceedings of the International Conference on Artificial Neural Networks
(ICANNS6), volume 1112 of Lecture Notes in Computer Science, pages 383-388.
Springer-Verlag, Heidelberg, 1996.

A. Perez and E. Sanchez. Neural networks structure optimization through on-line
hardware evolution. In Proceedings of the World Congress on Neural Networks
(WCNN96). INNS (International Neural Networks Society) Press, 1996. (to ap-
pear).

J. -Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing univer-

-sal computer. Physica D, 97:335-352, 1996.

S. R. Quartz and T. J. Sejnowski. The neural basis of cognitive development: A
constructivism manifesto. Behavioral and Brain Sciences, 1996. (to appear).

T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of SFI Studies in
the Sciences of Complexity, pages 371-408, Redwood City, CA, 1992. Addison-
Wesley.

J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng. Simple systems that
exhibit self-directed replication. Science, 259:1282-1287, February 1993.

A. Roy, S. Govil, and R. Mirand. A neural network learning theory and a poly-
nomial time RBF algorithm. IEEE Transactions on Neural Networks, 1996. (to

appear).

54

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

54

E. Sanchez. Field programmable gate array (FPGA) circuits. In E. Sanchez and
M. Tomassini, editors, Towards Fvolvable Hardware, volume 1062 of Lecture Notes
in Computer Science, pages 1-18. Springer-Verlag, Berlin, 1996.

E. Sanchez and M. Tomassini, editors. Towards Evolvable Hardware, volume 1062
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996.

H. -P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York,
1995.

M. Sipper and M. Tomassini. Co-evolving parallel random number generators.
In H. -M. Voigt, W. Ebeling, 1. Rechenberg, and H. -P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN IV, volume 1141 of Lecture Notes in Com-~
puler Science, pages 950-959. Springer-Verlag, Heidelberg, 1996.

M. Sipper and M. Tomassini. Generating parallel random number generators by
cellular programming. International Journal of Modern Physics C, 7(2):181-190,
1996.

G. Tempesti. A new self-reproducing cellular automaton capable of construction
and computation. In F. Mordn, A. Moreno, J. J. Merelo, and P. Chacén, editors,
ECAL’95: Third European Conference on Artificial Life, volume 929 of Lecture
Notes in Computer Science, pages 555-563, Berlin, 1995. Springer-Verlag.

A. Thompson. Silicon evolution. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 444452, Cambridge, MA, 1996. The MIT Press.

A. Thompson, 1. Harvey, and P. Husbands. Unconstrained evolution and hard
consequences. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hard-
ware, volume 1062 of Lecture Notes in Computer Science, pages 136-165. Springer-
Verlag, Berlin, 1996.

M. Tomassini. A survey of genetic algorithms. In D. Stauffer, editor, Annual
Reviews of Computational Physics, volume III, pages 87-118. World Scientific,
1995. Also available as: Technical Report 95/137, Department of Computer Sci-
ence, Swiss Federal Institute of Technology, Lausanne, Switzerland, July, 1995.
M. Tomassini. Evolutionary algorithms. In E. Sanchez and M. Tomassini, editors,
Towards Evolveble Hardware, volume 1062 of Lecture Notes in Computer Science,
pages 19-47. Springer-Verlag, Berlin, 1996.

J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Illinois, 1966. Edited and completed by A.W. Burks.

L. Wolpert. The Triumph of the Embryo. Oxford University Press, New York,
1991.

S. Xanthakis, R. Pajot, and A. Rozz. Immune system and fault-tolerant comput-
ing. In Evolution artificielle 94. Cepadues, cop., 1995.

R. R. Yager and L. A. Zadeh. Fuzzy Sets, Neural Networks, and Soft Computing.
Van Nostrand Reinhold, New York, 1994.

X. Yao. Evolutionary artificial neural networks. International Journal of Neural
Systems, 4(3):203-222, 1993.

