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Abstract

The historical idea of evolving machines has recently resurfaced as the nascent field of bio-inspired systems and
evolvable hardware. This paper describes the cellular programming approach used to evolve parallel cellular
machines, presenting its application to six computational problems: density, synchronization, ordering, boundary
computation, thinning and random number generation. Our results show that successful machines can be evolved to
solve these tasks. The methodology described herein represents one possible approach to attaining truly evolving
ware, evolware, with current implementations centering on hardware, while raising the possibility of using other forms
in the future, such as bioware. The paper presents work in progress, the aim being to give an account of results
obtained to date, ending with a list of several open issues for future research. © 1997 Elsevier Science Ireland Ltd.
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1. Introduction

The idea of applying the biological principle of
natural evolution to artificial systems, introduced
more than three decades ago, has seen an impres-
sive growth in the past few years. Usually
grouped under the term evolutionary algorithms
or evolutionary computation, one finds such di-
verse domains as genetic algorithms, evolution
strategies, evolutionary programming, and genetic
programming. Central to all these different
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methodologies is the idea of solving problems by
evolving an initially random pool of possible solu-
tions, through the application of ‘genetic’ opera-
tors, such that in time ‘fitter’ (i.e., better)
solutions emerge (Back, 1996; Michalewicz, 1996;
Mitchell, 1996; Fogel, 1995; Goldberg, 1989; Hol-
land, 1975).

Research in these areas has traditionally cen-
tered on proving theoretical aspects, such as con-
vergence  properties, effects of  different
algorithmic parameters, and so on, or on making
headway in new application domains, such as
constraint optimization problems, image process-
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ing, neural network evolution and more. The
implementation of an evolutionary algorithm, an
issue which usually remains in the background, is
quite costly in many cases, since populations of
solutions are involved, possibly coupled with
computation-intensive fitness evaluations. One
possible solution is to parallelize the process, an
idea which has been explored to some extent in
recent years (Tomassini, 1996; Cantu-Paz, 1995).
While posing no major problems in principle, this
may require judicious modifications of existing
algorithms or the introduction of new ones in
order to meet the constraints of a given parallel
machine.

In this paper a different approach is taken;
rather than ask ourselves how to implement better
a specific algorithm on a given hardware plat-
form, we pose the more general question of
whether machines can be made to evolve. While
this idea finds its origins in the cybernetics move-
ment of the 1940s and 1950s, it has recently
resurged in the form of the nascent field of bio-in-
spired systems and evolvable hardware (Sanchez
and Tomassini, 1996). The field draws on ideas
from evolutionary computation as well as on re-
cent hardware developments.

This study describes research into evolving cel-
lular machines. We introduce the basic approach,
denoted as cellular programming, and demon-
strate its viability by studying a number of non-
trivial computational problems. Work in progress
is presented, the aim being to give an account of
results obtained to date. Several questions are as
yet left unanswered, hopefully to be addressed in
future work; we have attempted to assemble these
in the final section. Though the results described
have been obtained through software simulation,
the ultimate goal is to attain truly ‘evolving
ware’—evolware—with current implementations
centering on hardware, while raising the possibil-
ity of using other forms in the future, such as
bioware. We have recently implemented an evolv-
ing, on-line, autonomous hardware system based
on the cellular programming approach described
in this paper (Goeke et al., 1996).

Our evolving machines are based on the cellular
automata model. Cellular automata (CA) are dy-
namical systems in which space and time are

discrete. A cellular automaton consists of an array
of cells, each of which can be in one of a finite
number of possible states, updated synchronously
in discrete time steps according to a local, identi-
cal interaction rule. The state of a cell at the next
time step is determined by the previous states of a
surrounding neighborhood of cells. This transi-
tion is usually specified in the form of a rule table,
delineating the cell’s next state for each possible
neighborhood configuration (Wolfram, 1984; Tof-
foli and Margolus, 1987). The cellular array (grid)
is n-dimensional, where n =1, 2, 3 is used in prac-
tice (in this work we shall concentrate on n=1
and n = 2). A one-dimensional CA is illustrated in
Fig. 1 (Mitchell, 1996).

CAs exhibit three notable features, namely mas-
sive parallelism, locality of cellular interactions,
and simplicity of basic components (cells). As
such they are naturally suited to hardware imple-
mentation, with the potential of exhibiting ex-
tremely fast and reliable computation that is
robust to noisy input data and component failure
(Gacs, 1985). A major impediment preventing
ubiquitous computing with CAs stems from the
difficulty of utilizing their complex behavior to
perform useful computations. Designing CAs to
exhibit a specific behavior or to perform a partic-
ular task is highly complicated, thus severely lim-
iting their applications. This results from the local
dynamics of the system, which renders the design

Rule table:
neighborhood: 111 110 101 100 011 010 001 000
output bit: 1 1 1 0 1 0 0 0
Grid:

t=0 [O[1[1JOJI[O[1[1[O[I[T[0][0][1]1]

t=1 [IJIJ1[TJOJIJIJI[I[I[T]JO[0]L]1]

Fig. 1. Illustration of a one-dimensional, 2-state CA. The
connectivity radius is r =1, meaning that each cell has two
neighbours, one to its immediate left and one to its immediate
right. Grid size is N = 15. The rule table for updating the grid
is shown on top. The grid configuration over one time step is
shown at the bottom. Spatially periodic boundary conditions
are applied, meaning that the grid is viewed as a circle, with
the leftmost and rightmost cells each acting as the other’s
neighbour.
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Fig. 2. The density task: operation of the GKL rule. CA is one-dimensional, uniform, 2-state, with connectivity radius r = 3. Grid
size is N = 149. White squares represent cells in state 0, black squares represent cells in state 1. The pattern of configurations is
shown through time (which increases down the page). Initial configurations were generated at random. (a) Initial density of 1s is
0.47. (b) Initial density of 1s is 0.53. The CA relaxes in both cases to a fixed pattern of all Os or all s, correctly classifying the initial

configuration.

of local rules to perform global computational
tasks extremely arduous. Automating the de-
sign (programming) process would greatly en-
hance the viability of CAs (Mitchell et al.,
1994b).

The model investigated in this paper is an
extension of the CA model, termed non-uni-
form cellular automata (Sipper, 1994; Vichniac
et al.,, 1986). Such automata function in the
same way as uniform ones, the only differ-
ence being in the cellular rules that need not
be identical for all cells. Our main focus is
on the evolution of non-uniform CAs to per-
form computational tasks, using the cellular
programming approach.

Section 2 describes previous work on
non-uniform CAs and evolving CAs. The cel-
lular programming algorithm is delineated in
Section 3, and applied to six computational
tasks in Section 4: density, synchronization,
ordering, boundary computation, thinning, and
random number generation. We demonstrate
that parallel cellular machines can be success-
fully evolved to solve these tasks. Our find-
ings and future work are discussed in Section
S.

2. Previous work

The application of genetic algorithms to the
evolution of uniform cellular automata was ini-
tially studied by Packard (1988) and recently un-
dertaken by the EVCA (evolving CA) group
(Mitchell et al., 1993, 1994a,b; Das et al., 1994,
1995; Crutchfield and Mitchell, 1995). They car-
ried out experiments involving one-dimensional
CAs with k=2 and r =3, where k denotes the
number of possible states per cell and r denotes
the radius of a cell, i.e. the number of neighbors
on either side (thus each cell has 2r + 1 neighbors,
including itself). (For two-dimensional CAs, two
types of cellular neighborhoods are usually con-
sidered: 5-neighbor, consisting of the cell along
with its four immediate nondiagonal neighbors,
and 9-neighbor, consisting of the cell along with
its eight surrounding neighbors.) Spatially peri-
odic boundary conditions are used, resulting in a
circular grid. A common method of examining the
behavior of one-dimensional CAs is to display a
two-dimensional space—time diagram, where the
horizontal axis depicts the configuration at a cer-
tain time ¢ and the vertical axis depicts successive
time steps (Fig. 2). The term ‘configuration’ refers
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to an assignment of 1 states to several cells, and
Os otherwise.

The EVCA group employed a standard genetic
algorithm to evolve uniform CAs to perform two
computational tasks, namely density and synchro-
nization (Section 4). The algorithm uses a ran-
domly generated initial population of CAs with
k=2, r=3. Each CA is represented by a bit
string, delineating its rule table, containing the
next-state (output) bits for all possible neighbor-
hood configurations, listed in lexicographic order
(i.e. the bit at position 0 is the state to which
neighborhood configuration 0000000 is mapped
to and so on until bit 127 corresponding to neigh-
borhood configuration 1111111). The bit string,
known as the ‘genome’ is of size 2" *'=128,
resulting in a huge search space of size 2!?%. Each
CA in the population was run for a maximum
number of M time steps, after which its fitness
was evaluated, in accordance with the task at
hand. Using the genetic algorithm highly success-
ful CA rules were found for both the density and
the synchronization tasks.

The model investigated in this paper is that of
non-uniform CAs, where cellular rules need not
be identical for all cells. Thus, rather than seek a
single rule that must be universally applied to all
cells in the grid, each cell is allowed to ‘choose’ its
own rule through evolution. As we shall see, the
removal of the uniformity constraint from the
original CA model lends itself to a novel al-
gorithm which is more amenable to implementa-
tion as evolware, in comparison to standard
evolutionary algorithms.

We have previously applied the non-uniform
CA model to the investigation of artificial life
issues (Sipper, 1994; 1995c,a), and have also
demonstrated its computation-universality (Sip-
per, 1995b). The co-evolution of non-uniform,
one-dimensional CAs to perform computations
was first undertaken in Sipper (1996a). We pre-
sented results pertaining to the density task, show-
ing that high performance, non-uniform CAs can
be co-evolved not only with radius r = 3 (Mitchell
et al., 1994b), but also for smaller radii, most
notably r =1 which is minimal. Sipper (1996b)
and Goeke et al. (1996) showed that high perfor-
mance can be attained for the synchronization

task as well, with r=1, using the cellular pro-
gramming algorithm. It was also found that
evolved systems exhibiting high performance are
quasi-uniform, meaning that the number of dis-
tinct rules is extremely small with respect to rule
space size; furthermore, the rules are distributed
such that a subset of dominant rules occupies
most of the grid (Sipper, 1995b, 1996a).

3. The cellular programming algorithm

We study 2-state, non-uniform CAs, in which
each cell may contain a different rule. A cell’s rule
table is encoded as a bit string (the ‘genome’),
containing the next-state (output) bits for all pos-
sible neighborhood configurations (Section 2).
Rather than employ a population of evolving,
uniform CAs, as with genetic algorithm ap-
proaches, our algorithm involves a single, non-
uniform CA of size N, with cell rules initialized at
random. Initial configurations are then generated
at random, in accordance with the task at hand,
and for each one the CA is run for M time steps.
Each cell’s fitness is accumulated over C =300
initial configurations, where a single run’s score is
1 if the cell is in the correct state after M itera-
tions, and 0 otherwise. After every C configura-
tions evolution of rules occurs by applying
crossover and mutation. This evolutionary pro-
cess is performed in a completely local manner,
where genetic operators are applied only between
directly connected cells. It is driven by nf,(c), the
number of fitter neighbors of cell i after ¢ configu-
rations. The pseudo-code of the algorithm is de-
lineated in Fig. 3.

Crossover between two rules is performed by
selecting at random (with uniform probability) a
single crossover point and creating a new rule by
combining the first rule’s bit string before the
crossover point with the second rule’s bit string
from this point onward. Mutation is applied to
the bit string of a rule with probability 0.001/bit.

There are two main differences between the
cellular programming algorithm and the standard
genetic algorithm: (a) The latter involves a popu-
lation of evolving, uniform CAs; all CAs are
ranked according to fitness, with crossover occur-
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for each cell 7 in CA do in parallel
initialize rule table of cell ¢
fi = 0 { fitness value }
end parallel for
¢ = 0 { initial configurations counter }
while not done do

generate a random initial configuration

run CA on initial configuration for M time steps

for each cell 7 do in parallel

if cell 7 is in the correct final state then

fi=fi+1
end if
end parallel for
c=c+1

if c mod C = 0 then { evolve every C configurations}

for each cell i do in parallel

compute nf;(c) { number of fitter neighbors }

if nfi(c) = 0 then rule 7 is left unchanged

else if nf;(c) = 1 then replace rule ¢ with the fitter neighboring rule,
followed by mutation

else if nf;(c) = 2 then replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation

else if nf;(c) > 2 then replace rule : with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)

end if
fi=0
end parallel for
end if
end while

Fig. 3. Pseudo-code of the cellular programming alogorithm.

ring between any two individuals in the popula-
tion. Thus, while the CA runs in accordance with
a local rule, evolution proceeds in a global man-
ner. In contrast, the cellular programming al-
gorithm proceeds locally in the sense that each
cell has access only to its locale, not only during
the run but also during the evolutionary phase,
and no global fitness ranking is performed. (b)
The standard genetic algorithm involves a popula-
tion of independent problem solutions; the CAs in
the population are assigned fitness values indepen-
dent of one another, and interact only through
the genetic operators in order to produce the next

generation. In contrast, our CA co-evolves since
each cell’s fitness depends upon its evolving neigh-
bors. (This may also be considered a form of
symbiotic cooperation, which falls, as does co-
evolution, under the general heading of ‘ecologi-
cal’ interactions (Mitchell, 1996 pages 182—183).)

This latter point comprises a prime difference
between our algorithm and parallel genetic al-
gorithms, which have attracted attention over the
past few years. These aim to exploit the inherent
parallelism of evolutionary algorithms, thereby
decreasing computation time and enhancing per-
formance (Tomassini, 1995). A number of models
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Table 1

List of computational tasks for which cellular machines were evolved via cellular programming

Task Description Grid
Density Decide whether the initial configuration contains a majority of Os or of Is 1D, r=1

2D, 5-neighbor
Synchronization Given any initial configuration, relax to an oscillation between all Os and all 1s 1D, r=1

Ordering

Rectangle- Find the boundaries of a randomly-placed, random-sized non-filled rectangle
boundary

Thinning Find thin representations of rectangular patterns

Random Generate ‘good’ sequences of pseudo-random numbers
number

2D, 5-neighbor

Order initial configuration so that Os are placed on the left and 1s are placed on the right 1D, r=1

2D, 5-neighbor

2D, 5-neighbor
1D, r=1

have been suggested, among them coarse-grained,
island models (Starkweather et al., 1991; Cohoon
et al., 1987; Tanese, 1987), and fine-grained, grid
models (Tomassini, 1993; Manderick and Spiessens,
1989). The latter resemble our system in that they
are massively parallel and local; however, the
co-evolutionary aspect is missing. As we wish to
attain a system displaying global computation, the
individual cells do not evolve independently as with
genetic algorithms (be they parallel or serial), i.e.
in a ‘loosely-coupled’ manner, but rather co-evolve,
thereby comprising a ‘tightly-coupled’ system.

4. Results

In this section we study six computational tasks
using one-dimensional grids as well as previously
unstudied two-dimensional ones: density (Section
4.1), synchronization (Section 4.2), ordering (Sec-
tion 4.3), rectangle-boundary (Section 4.4), thin-
ning (Section 4.5) and random number generation
(Section 4.6); these are summarized in Table 1.
Minimal cellular spaces are used: two-state, r =1
for the one-dimensional case and two-state, five-
neighbor for the two-dimensional one. Spatially
periodic boundary conditions are applied, result-
ing in a circular grid for the one-dimensional case,
and a toroidal one for the two-dimensional case.
The total number of initial configurations per
evolutionary run was in the range (10° 10°).
Performance values reported hereafter represent
the average fitness of all grid cells after C configu-

rations, normalized to the range (0, 1); these are
obtained during execution of the cellular pro-
gramming algorithm.

4.1. The density task

The one-dimensional density task is to decide
whether or not the initial configuration contains
more than 50% 1s, relaxing to a fixed-point pat-
tern of all 1s if the initial density of 1s exceeds 0.5,
and all Os otherwise. As noted by Mitchell et al.
(1994b), the density task comprises a non-trivial
computation for a small radius CA (r <« N, where
N is the grid size). Density is a global property of
a configuration whereas a small-radius CA relies
solely on local interactions. Since the 1s can be
distributed throughout the grid, propagation of
information must occur over large distances (i.e.
O(N)). The minimum amount of memory re-
quired for the task is O(log N) using a serial scan
algorithm, thus the computation involved corre-
sponds to recognition of a non-regular language.
Note that the density task cannot be perfectly
solved by a uniform, two-state CA, as proven by
Land and Belew (1995a). (This result applies to
the above statement of the problem, where the
CA'’s final pattern (i.e. output) is specified as a
fixed-point configuration. Interestingly, it has re-
cently been proven that by changing the output
specification, namely the final pattern toward
which the system should converge, a two-state,
r=1 uniform CA exists that can perfectly solve
the density problem (Capcarrere et al., 1996).)
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Fig. 4. One-dimensional density task: operation of a co-evolved, non-uniform, r =1 CA. Grid size is N = 149. Top figures depict
space-time diagrams, bottom figures depict rule maps. (a), Initial density of Is is 0.40, final density is 0. (b), Initial density of Is is

0.60, final density is 1.

The operation of the human-designed GKL
rule, which exhibits high performance on this
task, is shown in Fig. 2 (Sipper, 1996a; Mitchell et
al., 1994b; Gonzaga de Sa and Maes, 1992; Gacs
et al.,, 1978). We observe that propagation of
information about local neighborhoods takes
place to produce the final fixed-point configura-
tion. Essentially, the rule’s ‘strategy’ is to succes-
sively classify local densities, with the locality
range increasing over time. In regions of ambigu-
ity a ‘signal’ is propagated, seen either as a check-
erboard pattern in space—time or as a vertical
white-to-black boundary (a detailed analysis of
this rule is provided in Mitchell et al. (1994b) and
Crutchfield and Mitchell (1995)).

We have studied this task (Sipper, 1996a; Sip-
per and Ruppin, 1996a,b) using non-uniform,
one-dimensional, minimal radius » = 1 CAs of size
N = 149. The search space involved is extremely
large; since each cell contains one of 2% possible
rules this space is of size (2%)'%° =2!""2, In con-
trast, the size of uniform, r=1 CA rule space is
small, consisting of only 2% = 256 rules. This en-
abled us to test each and every one of these rules
on the density task, a feat not possible for larger

values of r. One of our major results is that
evolved non-uniform, » =1 CAs out perform any
possible uniform, r=1 CA (Sipper, 1996a). For
details on the performance comparison see (Sip-
per, 1996a).

For the cellular programming algorithm we
used randomly generated initial configurations,
uniformly distributed over densities in the range
(0, 1), with the CA being run for M =150 time
steps (thus, computation time is linear with grid
size). We found that non-uniform CAs had co-
evolved that exhibit performance values as high as
0.93. (In comparison, the maximal performance of
uniform r =1 CAs is 0.83 (Sipper, 1996a)). Fur-
thermore, these consist of a grid in which one rule
dominates, a situation referred to as quasi-unifor-
mity (Section 2). Fig. 4 demonstrates the opera-
tion of one such co-evolved CA along with a rules
map, depicting the distribution of rules by assign-
ing a unique gray level to each distinct rule. In
this example the grid consists of 146 cells contain-
ing rule 226, two cells containing rule 224, and
one cell containing rule 234. Rule numbers are
given in accordance with Wolfram’s convention
(Wolfram, 1983), representing the decimal equiva-
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Fig. 5. Two-dimensional density task: operation of a co-evolved, non-uniform, 2-state, 5-neighbour CA. Grid size is N =225
(15 x 15). Initial density of 1s is 0.51, final density is 1. Numbers at bottom of images denote time steps.

lent of the binary number encoding the rule table.
For example, the rule depicted in Fig. 1 is rule
232. The non-dominant rules act as ‘buffers’ pre-
venting information from flowing too freely, and
making local corrections to passing signals. A
detailed investigation of the application of cellular
programming to the one-dimensional density task
can be found in Sipper (1996a) and Sipper and
Ruppin (1996a).

The density task can be extended in a straight-
forward manner to two-dimensional grids, an in-
vestigation of which we have carried out,
attaining a notably higher performance than the
one-dimensional case, with values of 0.99. Fig. 5
demonstrates the operation of one such co-
evolved CA. Qualitatively, we observe the CA’s
‘strategy’ of successively classifying local densities,
with the locality range increasing over time; ‘com-

peting’ regions of density 0 and density 1 are
manifest, ultimately relaxing to the correct fixed
point.

4.2. The synchronization task

The one-dimensional synchronization task was
introduced by Das et al. (1995) and studied by us
in Sipper (1996b), Goeke et al. (1996) and Sipper
(1997) using non-uniform CAs. In this task the
CA, given any initial configuration, must reach a
final configuration, within M time steps, that os-
cillates between all Os and all 1s on successive time
steps. As with the density task, synchronization
also comprises a non-trivial computation for a
small-radius CA.

We studied non-uniform, one-dimensional,
minimal radius r =1 CAs of size N = 149; as for
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Fig. 6. One-dimentional synchronization task: Operation of two-co-evolved, non-uniform, r=1 CAs. Grid size is N =149. Top

figures depict space-time diagrams, bottom figures depict rule maps.

the density task, all possible uniform, r =1 CAs
were first tested on this task. For the cellular
programming algorithm we used randomly gener-
ated initial configurations, uniformly distributed
over densities in the range [0, 1], with the CA
being run for M =150 time steps. We found that
quasi-uniform CAs had co-evolved that exhibit
near-perfect performance, which surpasses any
possible uniform, r=1 CA. Fig. 6 depicts the
operation of two such co-evolved CAs, along with
rule maps. We have also experimented with two-
dimensional grids, obtaining highly successful re-
sults as with the one-dimensional case.

4.3. The ordering task

In this task, the one-dimensional CA, given any
initial configuration, must reach a final configura-
tion in which all Os are placed on the left side of
the grid and all 1s on the right side (thus the final
density equals the initial one, however the
configuration consists of a block of 0s on the left
followed by a block of 1s on the right). It is
interesting in that the output is not a uniform
configuration of all Os or all 1s as with the density
and synchronization tasks. Cellular programming

yielded quasi-uniform CAs with fitness values as
high as 0.93, one of which is depicted in Fig. 7. As
with the previous tasks we were able to ascertain
that this performance level is better than any
possible uniform r=1 CA.

4.4. The rectangle-boundary task

The possibility of applying CAs to perform
image processing tasks arises as a natural conse-
quence of their architecture. In a two-dimensional
CA, a cell (or a group of cells) can correspond to
an image pixel, with the CA’s dynamics designed
so as to perform a desired image processing task.
Earlier work in this area, carried out mostly in the
1960s and the 1970s was treated by Preston and
Duff (1984), with more recent applications pre-
sented in Broggi et al. (1993) and Hernandez and
Herrmann (1996).

The next two tasks involve image processing
operations. In this section we discuss a two-di-
mensional boundary computation: given an initial
configuration consisting of a non-filled rectangle,
the CA must reach a final configuration in which
the rectangular region is filled, i.e. all cells within
the confines of the rectangle are in state 1, and all
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Fig. 7. One-dimensional ordering task: operation of a co-evlved, non-uniform, r =1 CA. Top figures depict space—time diagrams.

Bottom figures depict rule maps. (a), Initial density of 1s is 0.315, final density is 0.328. (b), Inital density of 1s is 0.60, final density

is 0.59.

other cells are in state 0. Initial configurations
consist of random-sized rectangles placed ran-
domly on the grid (in our simulations, cells within
the rectangle in the initial configuration were set
to state 1 with probability 0.3; cells outside the
rectangle were set to 0). Note that boundary cells
can also be absent in the initial configuration.
This operation can be considered a form of image
enhancement, e.g. used for treating corrupted im-
ages. Using cellular programming, non-uniform
CAs were evolved with performance values of
0.99, one of which is depicted in Fig. 8.

Upon studying the (two-dimensional) rules map
of the co-evolved, non-uniform CA, we found
that the grid is quasi-uniform, with one dominant
rule present in most cells. This rule maps the cell’s
state to zero if the number of neighboring cells in
state 1 (including the cell itself) is less than two,
otherwise mapping the cell’s state to one (this is
referred to as a totalistic rule, in which the state of
a cell depends only on the sum of the states of its
neighbors at the previous time step, and not on
their individual states (Wolfram, 1983)). Thus,
growing regions of 1s are more likely to occur
within the rectangle confines than without.

4.5. The thinning task

Thinning (also known as skeletonization) is a
fundamental preprocessing step in many image
processing and pattern recognition algorithms.
When the image consists of strokes or curves of
varying thickness it is usually desirable to reduce
them to thin representations located along the
approximate middle of the original stroke or
curve. Such ‘thinned’ representations are typically

=

rbi || ) Il (el

0 1

4

5 6 7

Fig. 8. Two-dimensional rectangle-boundary task: operation of
a co-evolved, non-uniform, 2-state, 5-neighbour CA. Grid size
is N=225 (15 x 15). Numbers at bottom of images denote
time steps.
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Fig. 9. Two-dimensional thinning task: operation of a co-
evolved, non-uniform, 2-state, 5-neighbour CA. Grid size is
N = 1600 (40 x 40). Numbers at bottom of images denote time
steps. (a), Two separate lines. (b), Two intersecting lines.

easier to process in later stages, entailing savings
in both time and storage space (Guo and Hall,
1989).

While the first thinning algorithms were de-
signed for serial implementation, current interest
lies in parallel systems, early examples of which
were presented in Preston and Duff (1984). The
difficulty of designing a good thinning algorithm
using a small, local cellular neighborhood, cou-
pled with the task’s importance has motivated us
to explore the possibility of applying the cellular
programming algorithm. Guo and Hall (1989)
considered four sets of binary images, two of
which consist of rectangular patterns oriented at
different angles. The algorithms presented therein
employ a two-dimensional grid with a 9-cell
neighborhood, each parallel step consisting of two
sub-iterations in which distinct operations take
place. The set of images considered by us consists
of rectangular patterns oriented either horizon-
tally or vertically. While more restrictive than that
of Guo and Hall (1989), it is noted that we
employ a smaller neighborhood (5-cell) and do
not apply any sub-iterations.

Fig. 9 demonstrates the operation of a co-
evolved CA performing the thinning task. Al-
though the evolved grid does not compute perfect
solutions, we observe, nonetheless, good thinning
‘behavior’ upon presentation of rectangular pat-
terns as defined above (Fig. 9a). Furthermore,
partial success is demonstrated when presented

with more difficult images involving intersecting
lines (Fig. 9b).

4.6. Random number generation

Random numbers are needed in a variety of
applications, yet finding good random number
generators, or randomizers, is a difficult task
(Park and Miller, 1988). To generate a random
sequence on a digital computer, one starts with a
fixed length seed, then iteratively applies some
transformation to it, progressively extracting as
long as possible a random sequence. Such num-
bers are usually referred to as pseudo-random, as
distinguished from true random numbers resulting
from some natural physical process. In the last
decade cellular automata have been used to gener-
ate random numbers (Wolfram, 1986; Hortensius
et al., 1989; Koza, 1992).

Sipper and Tomassini (1996a,b) applied the cel-
lular programming algorithm to evolve random
number generators. Essentially, the cell’s fitness
score for a single configuration (Fig. 3) is the
entropy of the temporal bit sequence of that cell,
with higher entropy implying better fitness. This
fitness measure was used to drive the evolutionary
process, after which standard tests were applied to
evaluate the quality of the evolved CAs. The
results obtained suggest that good generators can
indeed be evolved; these exhibit behavior at least
as good as that of previously described CAs, with
notable advantages arising from the existence of a
‘tunable’ algorithm for obtaining random number
generators.

5. Concluding remarks and future work

In this paper we described the cellular program-
ming approach used to evolve parallel cellular
machines, and demonstrated its viability by apply-
ing it to the solution of six computational prob-
lems. This methodology represents one possible
approach to attaining truly evolving ware, evol-
ware. Indeed, we have recently implemented an
evolving, on-line, autonomous hardware system
based on cellular programming (Goeke et al.,
1996).
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Our work to date suggests that the use of
non-uniform CAs coupled with a local, co-evolu-
tionary algorithm offers a number of advantages,
including: (1) increased rule variability, thereby
entailing easier ‘adaptation’ to a possible change
in the ‘environment’, i.e. task; (2) easier imple-
mentation as evolware; (3) fault tolerance arising
from the insensitivity to minor differences be-
tween cellular rules (see below); and (4) better
scalability (see below).

The work reported herein represents a first step
in an exciting, nascent domain. While results to
date are encouraging, there are still several possi-
ble avenues for future research, some of which
have been explored to a certain extent, while
others await to be pursued. We have attempted to
assemble some of these below.

What classes of computational tasks are most
suitable for such evolving cellular machines? and,
what possible applications do they entail? We
have noted feasible application areas such as im-
age processing and random number generation.
Clearly, more research is necessary in order to
elaborate these directions as well as to find new
ones.

Computation in cellular machines—how are we
to understand the emergent, global computation
arising in such locally-connected machines?
Crutchfield and Mitchell (1995) and Das et al.
(1994, 1995) carried out an interesting analysis
using automated methods developed by
Crutchfield and Young (1989), Hanson and
Crutchfield (1992) and Crutchfield and Hanson
(1993) for discovering computational structures
embedded in the space—time behavior of CAs.
Currently, we have performed a more in-depth
analysis within the context of the cellular pro-
gramming framework in Sipper (1996a). This is-
sue is interesting both from a theoretical point of
view as well as from a practical one, where it may
help guide our search for suitable classes of tasks
for such machines.

Studying the evolutionary process— Mitchell et
al. (1994b, 1993) investigated the process of evolu-
tion (of uniform CAs) embodied by the standard
genetic algorithm. Our algorithm is different, as it
is local and co-evolutionary, presenting novel and
interesting dynamics worthy of further study. We

wish to enhance our understanding of how evolu-
tion creates complex, global behavior in such
locally interconnected systems of simple parts; a
first step along this path has been taken in Sipper
(1996a).

Modifications of the evolutionary algorithm—
the representation of CA rules (i.e. the ‘genome’)
used in the experiments reported herein consists
of a bit string containing a lexicographic listing of
all possible neighborhood configurations (Section
2). It has been noted by Land and Belew (1995b)
that this representation is fairly low level and
brittle since a change of one bit in the rule table
can have a large effect on the computation per-
formed. They evolved uniform CAs to perform
the density task using other bit-string representa-
tions, as well as a novel, higher-level one consist-
ing of condition—action pairs; it was
demonstrated that better performance is attained
when employing the latter. More recently, Andre
et al. (1996a,b) used genetic programming (Koza,
1992), in which a rule is represented by a LISP
expression, to evolve uniform CAs to perform the
density task; this resulted in a CA which outper-
forms the best known uniform, r=3 density
classifier, namely the GKL rule. These experi-
ments demonstrate that changing the bit-string
representation, i.e. the encoding of the ‘genome’
may entail notable performance gains; indeed, this
issue is of prime import where evolutionary al-
gorithms in general are concerned (Mitchell,
1996). Such encodings could be incorporated into
the cellular programming approach. We noted in
Section 3 that fitness is assigned locally to each
cell; another possibility might be to assign fitness
scores to blocks of cells, in accordance with their
mutual degree of success on the task at hand. It is
clear that the novelty of our algorithm leaves
much to be explored, and we plan to incorporate
such ideas, as well as others, within our frame-
work.

Modifications of the cellular machine model—
in this paper we studied one generalization of the
CA model involving non-uniformity of rules.
Other possible modifications include: (1) General-
izing upon the CA’s standard, homogeneous con-
nectivity. We have studied non-standard
connectivity architectures, where each cell has a
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small, identical number of connections, yet not
necessarily from its most immediate neighboring
cells, and also investigated the possibility of evolv-
ing the architecture through a two-level evolution-
ary process, in which the cellular rules evolve
concomitantly with the cellular connections. It
was shown that definite performance gains can
thus be attained (Sipper and Ruppin, 1996a,b); (2)
The application of asynchronous state updating
(currently synchronous updating is applied, i.e. all
cells are updated at once) (Sipper et al., 1996b)
(this issue was previously investigated by (Sipper,
1995c) in a somewhat different model); (3) Non-
deterministic updating, also connected with the
issue of robustness, namely how resistant are our
systems in the face of errors (e.g. how is the
computation affected when a small probability of
error is introduced in the updating of cell states?)
(Sipper et al., 1996a,b); and (4) Three-dimensional
grids (and tasks).

One of the motivations for the above modifica-
tions of the cellular machine model is the desire to
attain realistic systems that are more amenable to
implementation as evolware.

Scaling—this involves two separate issues: the
evolutionary algorithm and the evolved solutions.

How does the evolutionary algorithm scale with
grid size? Though to date we have performed
experiments with different grid sizes, a more in
depth inquiry is needed. Note that as our al-
gorithm is local it scales better in terms of hard-
ware resources than the standard (global) genetic
algorithm; adding grid cells requires only local
connections in our case whereas the standard
genetic algorithm includes global operators such
as fitness ranking and crossover.

How can larger grids be obtained from smaller
(evolved) ones, i.e. how can evolved solutions be
scaled? This has been purported as an advantage
of uniform CAs, since one can directly use the
evolved rule in a grid of any desired size. How-
ever, this form of simple scaling does not bring
about task scaling. As demonstrated, e.g. by
Crutchfield and Mitchell (1995) for the density
task, performance decreases as grid size increases.
For non-uniform CAs quasi-uniformity may facil-
itate scaling since only a small number of rules
must ultimately be considered. To date we have

attained successful systems for the random num-
ber generation task using a simple scaling scheme
involving the duplication of the rules grid (Sipper
and Tomassini, 1996a). We are currently explor-
ing a more sophisticated scaling approach, with
preliminary encouraging results.

Implementation—as discussed above, this is
one of the prime motivations of our work, the
goal being to construct evolware.

Evolving cellular machines hold potential both
scientifically, as vehicles for studying phenomena
of interest in areas such as complex systems and
artificial life, as well as practically, showing a
range of potential future applications ensuing
from the construction of adaptive systems. This
work has shed light on the possibility of comput-
ing with such machines, and demonstrated the
feasibility of their programming by means of co-
evolution.
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