
On the Generation of High-Quality
Random Numbers by

Two-Dimensional Cellular Automata

Marco Tomassini,
Moshe Sipper, Senior Member, IEEE, and

Mathieu Perrenoud

AbstractÐFinding good random number generators (RNGs) is a hard problem

that is of crucial import in several fields, ranging from large-scale statistical physics

simulations to hardware self-test. In this paper, we employ the cellular

programming evolutionary algorithm to automatically generate two-dimensional

cellular automata (CA) RNGs. Applying an extensive suite of randomness tests to

the evolved CAs, we demonstrate that they rapidly produce high-quality random-

number sequences. Moreover, based on observations of the evolved CAs, we are

able to handcraft even better RNGs, which not only outperform previously

demonstrated high-quality RNGs, but can be potentially tailored to satisfy given

hardware constraints.

Index TermsÐCellular automata, random number generators, evolutionary

algorithms.

æ

1 INTRODUCTION AND PREVIOUS WORK

PSEUDORANDOM number generation by cellular automata (CA) has
been an active field of research in the last decade [1], one of the
underlying motivations stemming from the advantages offered by
CAs when considered from a VLSI viewpoint: CAs are simple,
regular, locally interconnected, and modular. These characteristics
make them easier to implement in hardware than other models,
thus making CAs an attractive choice for onboard applications.
CAs have traditionally been used to implement RNGs in
cryptographic devices [2] and in Built-In Self-Test (BIST) circuits
[3]. Random number generators play an import role in several
computational fields, including Monte Carlo techniques, Brownian
dynamics, and stochastic optimization methods (such as simulated
annealing and genetic algorithms). With the advent of massively
parallel scientific computation, the parallel generation of
pseudorandom numbers has become essential.

The above domains depend critically on the quality of the
random numbers, as measured by appropriate statistical tests.
Moreover, when very long sequences of random numbers are
needed, computational efficiency is often of prime import, i.e., the
sequence must be produced as rapidly as possible. CAs provide a
good solution to this problem, able to rapidly produce high-quality
random-number streams.

One-dimensional CA random number generators have been
extensively studied in the past [1], [3], [4], [5]. These studies have
shown convincingly the suitability of CA-generated pseudoran-
dom numbers and their superiority with respect to other widely
used methods, such as linear feedback shift registers (LFSRs),
especially in the case of delay type faults which require pairs of
patterns in a specified order [6]. In these works, CA RNGs were
essentially handcrafted by studying the structure of the bit patterns
generated over time, with theoretical results serving as a baseline
offering guidance.

Another possibility is to let the CA random number generator

be evolved automatically by a genetic algorithm [7], [8]. A first step

in the evolution of one-dimensional CA RNGs was taken by us in

[9]. In a later work, we confirmed and extended these results by

generating much longer pseudorandom sequences and by subject-

ing them to a more stringent and elaborate suite of randomness

tests [10]. We concluded that: 1) Very good CA RNGs can indeed

be evolved by a genetic algorithm and 2) with minimal (human)

design the evolved CAs can be yet further improved.
Chowdhury et al. [11] described a methodology for producing

pseudorandom numbers by two-dimensional cellular automata.

Their results suggest that two-dimensional CAs are superior to

one-dimensional ones of the same size (i.e., with an equal number

of grid cells) in terms of the quality of the resulting pseudorandom

numbers.
In the present study, we extend upon these previous works,

using a genetic algorithm to evolve two-dimensional CA RNGs.

After a short description of CAs in the next section, we describe the

evolutionary algorithm in Section 3. Section 4 delineates our

results, showing that evolved two-dimensional CAs produce high-

quality random-number sequences. In Section 5, we study the cycle

lengths of our CAs. Finally, in Section 6, we offer some concluding

remarks.

2 CELLULAR AUTOMATA

Cellular automata (CA) are dynamical systems in which space and

time are discrete. A cellular automaton consists of an array of cells,

each of which can be in one of a finite number of possible states,

updated synchronously in discrete time steps, according to a local,

identical interaction rule. Here, we will only consider Boolean

automata in which the cellular state, s, 2 f0; 1g. The state of a cell at

the next time step is determined by the current states of a

surrounding neighborhood of cells. The cellular array (grid) is

d-dimensional, where d � 1; 2; 3 is used in practice; in this paper,

we shall concentrate on d � 2, i.e., on two-dimensional grids. The

identical rule contained in each cell is essentially a finite state

machine, usually specified in the form of a rule table (also known

as the transition function), with an entry for every possible

neighborhood configuration of states. The cellular neighborhood of

a cell consists of itself and of the surrounding (adjacent) cells. For

one-dimensional CAs, a cell is connected to r local neighbors (cells)

on either side, where r is referred to as the radius (thus, each cell

has 2r� 1 neighbors). For two-dimensional CAs, two types of

cellular neighborhoods are usually considered: five cells, consist-

ing of the cell along with its four immediate nondiagonal

neighbors (also known as the von Neumann neighborhood) and

nine cells, consisting of the cell along with its eight surrounding

neighbors (also known as the Moore neighborhood). In this work,

we only consider 5-neighbor grids, thus limiting the already large

search-space size; moreover, results exist only for this neighbor-

hood type, which is also more amenable to hardware implementa-

tion. When considering a finite-size grid, cyclic boundary

conditions are frequently applied, resulting in a circular grid for

the one-dimensional case and in a toroidal one for the two-

dimensional case. Fixed, or null, boundary conditions can also be

used, in which the grid is surrounded by an outer layer of cells in a

fixed state of zero. This latter case is usually easier to implement in

hardware.
Nonuniform, or inhomogeneous, cellular automata function in

the same way as uniform ones, the only difference being in the

cellular rules that need not be identical for all cells [12]. Nonuni-

form CAs share the basic ªattractiveº properties of uniform ones:

simplicity, parallelism, and locality [13].

1146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000

. M. Tomassini and M. Perrenoud are with the Institute of Computer
Science, University of Lausanne, CH-1015 Lausanne, Switzerland.
E-mail: Marco.Tomassini@iismail.unil.ch.

. M. Sipper is with the Logic Systems Laboratory, Swiss Federal Institute of
Technology, IN-Ecublens, CH-1015 Lausanne, Switzerland.

Manuscript received 28 June 1999; accepted 8 June 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110139.

0018-9340/00/$10.00 ß 2000 IEEE

Draf
t



3 EVOLUTION OF TWO-DIMENSIONAL, NONUNIFORM

CAs

Though one-dimensional CA RNGs have been thoroughly studied
(see Chaudhuri et al. [1] for a good review), the use of two-
dimensional CAs for pseudorandom number generation has
received little attention in the literature; indeed, the only detailed
study we are aware of is that of Chowdhury et al. [11]. They found
that two-dimensional CAs can generate better pseudorandom
numbers than one-dimensional ones, while retaining their (easy)
amenability to VLSI implementation. More recently, Cattel et al.
gave a complete characterization of a particular type of 2D CA,
with two connected lines of n cells each [6]. In this work, a number
of properties of these special 2D CAs are derived, such as
characteristic polynomials, minimal cost, and maximal length
generators. The work described herein confirms the conclusions of
Chowdhury et al. with respect to two-dimensional CAs, while
surpassing their CAs in terms of quality. In this section, we
describe the evolutionary method used to automatically generate
our CA RNGs; this method is based on so-called genetic
algorithms [7], [8].

A genetic algorithm is an iterative procedure that involves a
constant-size population of individuals, each one represented by a
finite string of symbols, known as the genome, encoding a possible
solution in a given problem space. This space, referred to as the
search space, comprises all possible solutions to the problem at
hand. The algorithm sets out with an initial population of
individuals that is generated at random or heuristically. At every
evolutionary step, known as a generation, the individuals in the
current population are decoded and evaluated according to some
predefined quality criterion, referred to as the fitness, or fitness
function. To form a new population (the next generation),
individuals are selected according to their fitness and then
transformed via genetically inspired operators, the most oft-used
being crossover (combining two or more genomes to form novel
offspring) and mutation (randomly flipping bits in the genomes).
Iterating this procedure, the genetic algorithm may eventually find
an acceptable solution, i.e., one with high fitness.

As with our previous one-dimensional CAs, the two-dimen-
sional, nonuniform CA RNGs described herein were also obtained
via a genetic algorithm known as cellular programming [9], [10], [12].
The goal of the evolutionary algorithm is to evolve ªgoodº rule
tables for a nonuniform CA, i.e., rules that give rise to high-quality
sequences of random numbers. Cellular programming involves a
single nonuniform CA, where each cell's rule table is encoded as a
bit stringÐthe genomeÐand rule evolution in the grid is driven by
a local fitness measure; the genetic operations of selection and
crossover [7] are also performed locally between neighboring cells.

As in our previous studies, each and every cell of the evolving
CA is assigned a fitness score according to the entropy Eh of its bit
sequence in time. Let k be the number of possible values per
sequence position (in our case CA states) and h a subsequence
length. Eh (measured in bits) for the set of kh probabilities of the kh

possible subsequences of length h is given by:

Eh � ÿ
Xkh
j�1

phj log2 phj ;

where h1; h2; . . . ; hkh are all the possible subsequences of length h
(by convention, log2 0 � 0 when computing entropy). The entropy
attains its maximal value when the probabilities of all kh possible
subsequences of length h are equal to 1=kh; in our case, k � 2 and
the maximal entropy is Eh � h. Higher entropy implies better
fitness.

High entropy is a necessary, but by no means sufficient,
condition for obtaining high-quality RNGs; it is simple enough to
act as a fitness measure driving the evolutionary process, however,

a battery of tests must be applied after evolution to ascertain
whether the evolved RNGs are indeed of high quality. The test
results, described in the next section, show that our method does
indeed produce high-quality RNGs.

Most of our evolutionary runs were performed with 8� 8 CAs,
with each of the 64 rule tables randomly initialized at the outset.
The evolutionary algorithm is then run for a total of 200 genera-
tions. A generation consists of presenting the evolving CA with a
random initial configuration and letting it run (in accordance with
the rule tables) for 4; 096 time steps. Fitness of each cellÐi.e.,
entropyÐis computed on the basis of the sequence of bits
generated during these 4; 096 steps, using a subsequence length
h � 4. Each cell is thus assigned a fitness value, after which genetic
operators (crossover and mutation) are applied [7]. These
operators are local, i.e., crossover is applied only between the rule
tables of adjacent cells (see Sipper [12] for details).

During our initial experiments, a cell's rule table was
unconstrained, i.e., the evolved rule (genome) could be any of
the possible 232 rules (a 5-neighbor rule is completely specified by
32 bits). Though the resulting two-dimensional CAs proved better
than the previously evolved one-dimensional ones [10], they were
not exceptional in that they did not surpass the performance of
other high-quality CA RNGs (e.g., those of Chowdhury et al. [11]).
This is probably due to the huge size of the search spaceÐ�232�64

for an 8� 8 nonuniform gridÐcoupled with the relative sparse-
ness of very high-quality solutions. To find better CAs, and based
on our observation of the resulting rules in the one-dimensional
case, we restricted the genomic representation of the rule tables to
allow for any of the 64 additive rulesÐthose involving only XOR
and XNOR logic (again, since the CA is nonuniform, the search
space is still quite large: 648�8, for an 8� 8 grid).

In order to delineate our results, we introduce the following
rule-numbering scheme (after [11]): Since there are 64 possible
(additive) rules, we need 6 bits to describe a rule. Let si;j�t� be the
state of the cell at row i and column j, at time t. Its state at the next
time step, si;j�t� 1� is then computed as follows:

si;j�t� 1� � X � �C � si;j�t�� � �N � siÿ1;j�t�� � �W � si;jÿ1�t��
� �S � si�1;j�t�� � �E � si;j�1�t��;

where � and � are the operations XOR and AND, respectively, and
X, C (center), N (north), S (south), W (west), and E (east) are
binary variables. C, N , S, W , and E denote whether the respective
neighboring cell state is taken into account (a value of 1) or not (a
value of 0). The binary variable X demarcates linear (X � 0) from
nonlinear (X � 1) additive rules. The genome of a cell is then given
by the 6-bit string XCNWSE. For example, rule 14 (001110)
represents the following function:

si;j�t� 1� � siÿ1;j�t� � si;jÿ1�t� � si�1;j�t�:

4 RESULTS

As with previous experiments in cellular programming [12], we
observed that the grid, being completely nonuniform (because
random) at the outset, converges to a small number of distinct
rules; this was dubbed a quasi-uniform grid by Sipper [12]. For
example, an 8� 8 grid may potentially contain 64 distinct rules,
though after evolution takes place we find that there are usually
four to nine distinct rules. Moreover, as described by Sipper [12],
there is a tendency for some rules to ªdominateº over others, i.e.,
the distribution of rules is not homogeneous; this is demonstrated
in Fig. 1, which delineates one of our best evolved CA random
number generators.

We observed that, when evolution converges to a grid with but
one rule, the average fitness drops; fitness may possibly rise again

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000 1147



if the genetic operator of mutation is ªsuccessfulº in replenishing
the genetically depleted population (indeed, our experiments
revealed that this latter is usually the case, i.e., evolution manages
to bootstrap itself from this low-fitness phase).

We performed a total of 30 experiments, observing that, of
the 64 possible rules, there is a subset that tends to emerge via
evolution, comprising rules 31, 47, and 63. We also noted that a
majority of rules were ª1-dominated,º i.e., their genomes (see
Section 3) contained a majority of 1s: Considering all experi-
ments performed, 63.3 percent of the rules comprised five or
six 1s and 32 percent comprised four 1s. Based on the 1-
dominance phenomenon, we then constructed by hand custom
CAs containing only rules with five or six 1s (rules 31, 47, 55,
59, 61, 62, and 63) by randomly placing these rules in the grid.
The idea of applying the observations emerging from the
evolutionary process in order to further improve the results
was previously used by us in [10]. Fig. 2 demonstrates the
operation of such a handcrafted, 15� 15 CA.

All evolved and constructed two-dimensional CA random
number generators were subjected to an extensive battery of
statistical randomness tests. Randomness can never be proven,
only the lack of it can be shown. Although no amount of testing
can guarantee that a given sequence is truly random, testing is the

most acceptable pragmatic way of assessing the pseudorandom-

ness of a given pattern. For testing, we used what is probably the

most stringent suite of randomness tests presented to date:

Marsaglia's Diehard suite [14]. A detailed description of the tests

is beyond the scope of this paper and the interested reader is

referred to [10], [14], [15].
How does one extract random numbers from a two-dimen-

sional cellular automaton? There are several methods of doing this,

with our own choice based on simplicity: The CA is run for four

time steps, each cell thus producing a sequence of four bits (in

time)Ðwhich are treated collectively as a hexadecimal digit. These

hexadecimal digits are then juxtaposedÐcell after cell and line

after line in a left-right, top-down mannerÐto create a sequence of

x� y random numbers, where x; y are the grid's dimensions. The

process is then iterated. For example, an 8� 8 grid will produce

64 hexadecimal random digits every four time steps.
Table 1 delineates the test results of five evolved CAs. Our main

conclusion is that excellent CA random number generators can be

1148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000

Fig. 1. An evolved 8� 8 cellular automaton. The one shown above is among the
best evolved, i.e., it produces among the highest-quality sequences of random
bits. Shown above is a so-called rules map [12], delineating the rule present in
each cell when evolution ends. The four rulesÐ15, 31, 47, 63Ðcorrespond,
respectively, to the following Boolean expressions:
si;j�t� 1� � siÿ1;j�t� � si;jÿ1�t� � si�1;j�t� � si;j�1�t�,
si;j�t� 1� � siÿ1;j�t� � si;jÿ1�t� � si�1;j�t� � si;j�1�t� � si;j�t�,
si;j�t� 1� � 1� siÿ1;j�t� � si;jÿ1�t� � si�1;j�t� � si;j�1�t�,
si;j�t� 1� � 1� siÿ1;j�t� � si;jÿ1�t� � si�1;j�t� � si;j�1�t� � si;j�t�.
The rule-numbering scheme is explained in Section 3.

Fig. 2. The operation of a handcrafted CA. In the above image, the 15 lines of the
15� 15 grid have been juxtaposed, thus forming one 225-cell line. Each line in the

image depicts the configuration of (225) states at a given time, with time increasing
down the page. This image allows us to visually observe the random nature of the
CA bit sequences (a fact confirmed by the statistical randomness tests).

TABLE 1
Test Results of Five Evolved 8� 8 CA Random Number Generators

CAs 1, 3, and 4 are among the best ones evolved, passing all the tests. For comparison, we also show two CAs of slightly lesser quality. Fixed boundary conditions are
used (Section 2). For a full description of the random-number tests, see [10], [14].



evolved which pass (with flying colors) one of the hardest batteries
of randomness tests used today [14].

Table 2 shows the test results of a hand-designed CA, using
both cyclic and fixed boundary conditions (see Section 2). For the
CA with fixed boundary conditions, we applied two distinct bit-
sampling modes: fullÐin which the cells impinging upon the fixed
boundary cells are taken into account and reducedÐin which these
next-to-boundary cells are not taken into account. We note that,
with cyclic boundary conditions, as well as with fixed boundary
conditions in reduced mode, the CA passes all the tests, while,

with fixed boundary conditions in full mode, the CA fails a
number of tests; this latter is probably due to the fixity of the outer-
layer cells, whichÐwhen in full modeÐreduces the randomness of
the resulting sequence (since the impinging cells have fixed
neighbors).

Comparing Tables 1 and 2, we note that both evolved CAs, as
well as hand-designed ones (though based on evolutionary
results), produce high-quality random sequences. The advantage
of hand-designing CAs has to do mainly with hardware
implementation: One can choose rules that are more easily
implemented in the target medium (e.g, VLSI).

Table 3 shows that our CA passes all the tests, thus surpassing
that of Chowdhury et al. [11]. In particular, we performed four
additional multivalued tests described by Marsaglia [14], with our
CA passing all of them, while that of Chowdhury et al. fails most of
them. Our CAs also outperform two of the best known classic
RNGs: CGL (an RNG based on the linear congruential method)
and RAN3 (an RNG of the lagged Fibonacci type); these two RNGs
were studied by us in detail in [10]. Our CAs are thus among the
best known RNGs to date (perhaps even the best), with the added
advantage of easier amenability to hardware implementation
(because of their ªCA-ishº nature).

Finally, we also performed experiments with smaller (down to
5� 5) and larger (up to 15� 15) grids. The smaller CAs are good
RNGs for some applications, though our conclusion is that a grid
of size at least 7� 7 is necessary in order to obtain excellent results.

5 STUDYING CYCLE LENGTHS

A state of the global discrete dynamical system comprised by a CA
is the pattern of 0s and 1s at a given time step. One can trace out
the behavior of a one-dimensional CA in time by completely
describing its trajectory through state space from any given initial
configuration. This is portrayed as rows of successive global states

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000 1149

TABLE 2
Test Results of a Handcrafted 8� 8 CA Random Number Generator

For the CA with fixed boundary conditions, we applied two distinct bit-sampling
modes: fullÐin which the cells impinging upon the fixed boundary cells are taken
into account and reducedÐin which these next-to-boundary cells are not taken
into account. For a full description of the random-number tests, see [10], [14].

TABLE 3
Comparision of One of Our CAs with the CA Described by Chowdhury et al. [11]

Our CA was created by randomly placing in each cell of an 8� 8 grid one of the rules with at least five 1s. Note that, for the evaluation, we performed four additional
multivalued tests described in [14] (the results of these additional tests are given in the last four lines; in these tests, the notation k=l means that the CA passes k of the
l tests).



of the entire arrayÐthe so-called space-time pattern. Space-time
patterns, which are well-known in the domain of continuous
dynamical systems, represent a deterministic sequence of global
states advancing along one particular path within a basin of
attraction. In a finite array, the path inevitably leads to a state cycle.
Other sequences of global states typically exist that lead to the
same state cycle. The set of all possible paths make up the basin of
attraction. CA basins of attraction are thus composed of global
states linked according to their trajectory relationship and will
typically have a topology of branching trees rooted at attractor
cycles [16]. Other separate basins of attraction typically exist within
the set of all possible array configurations. A CA will, in a sense,
crystallize state space into a set of basins of attraction, known as
the basin of attraction field. The basin of attraction field is a
mathematical object which, if represented as a graph, is an explicit
global portrait of a CA's entire repertoire of behavior. It includes
all possible space-time patterns.

The length of a CA's state cycle is very important in
determining the suitability of the CA as a generator of random
numbers. In general, and other things being equal, the longer the
cycleÐthe better the CA acts as an RNG. For instance, typical
Monte Carlo applications may require on the order of
108 pseudorandom numbers. Ideally, an arbitrary n-cell CA RNG
should have a maximum cycle length, i.e., it should start repeating
itself only after 2n time steps since this will result in the longest

possible pseudorandom sequence. It is indeed possible to construct
a CA with maximum cycle length for a particular class of CAs
called group CAs. In this case, the cycle length is 2n ÿ 1 and the
construction is based on the characteristic polynomial of the CA,
which should be primitive, as described in [1]. However, according
to our results, CAs in this class are not the best in terms of the
quality of the random numbers generated (note that totally
nonrandom sequences can exhibit maximal cycle length). In a
recent work, Cattel et al. [6] showed that maximal length,
nonuniform, 2� n CAs (i.e., two lines of n cells each) can be
constructed up to n � 250. The bit patterns generated by these CAs
are useful in self-test applications.

Since the rules of our nonuniform CA RNGs have been either
artificially evolved or drawn from evolved rules (rather than
devised on the basis of the characteristic polynomial), it follows
that they will not in general exhibit maximum cycle length. Hence,
we wanted to study empirically the behavior of the cycle lengths in
our automata.

Finding cycle lengths is difficult because the number of possible
global CA states increases exponentially with the number of cells;
this limits the size of CAs for which cycle lengths can be calculated.
We tested a number of randomly generated, small-size, good-
quality, two-dimensional CAs over 20 random initial configura-
tions, with the goal being to compare the average observed cycle
length with the theoretical maximal length. The results, summar-

1150 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000

TABLE 4
Average and Maximum Cycle Lengths for Various Small Two-Dimensional CAs

The ratio of maximum to average cycle lengths and the logarithm of the average value are also shown. For each CA size, the average length was computed over
20 randomly generated CAs, each run over 20 random initial configurations.

Fig. 3. Average CA cycle lengths (dotted line) compared with the theoretical maximum values (solid line) for various CA grid sizes.



ized in Table 4, suggest that the average cycle length for an n-cell
CA increases exponentially and is on the order of 2nÿ3.

The observed relationship between maximum and average
cycle lengths is depicted in Fig. 3. Though we could not test large
CAs, our experiments with small CAs never resulted in a CA of
cycle length less than 2nÿ4 on average, except for a small deviation
(4:81 instead of 5 or higher) in the 9-cell case (3� 3). Extrapolating
from this observation, we postulate that most cycles of an 8� 8
two-dimensional CA will not be shorter than 260. If extremely long
cycles are of crucial import (which might be the case with large-
scale statistical physics applications), then one could reseed the
generator before the end of the probable average cycle (i.e.,
initialize the CA with a new initial configuration) or simply use a
slightly larger CA.

6 CONCLUDING REMARKS

In this paper, we applied the cellular programming evolutionary
algorithm to the hard problem of automatically producing random
number generators. Our results show that excellent two-dimen-
sional RNGs can be evolved that outperform previous RNGs.
Moreover, based on the rules discovered by evolution, one can
handcraft high-quality CAs, possibly tailoring them to meet
hardware constraints. Since evolutionary algorithms are stochastic
heuristic search techniques, there is no guarantee that their results
are optimal. In other words, there is no theory that can assure us
that better 2D CAs cannot be constructed. However, judging by the
independent comprehensive statistical tests applied, the automata
found are of very good quality for pseudorandom number
generation.

Comparing the two-dimensional CAs studied herein with
previously studied one-dimensional CAs brings to light an
important point which has to do with so-called time spacing. Time
spacing means that not all the bits generated are considered as part
of the random sequence. For instance, one might keep only one bit
out of two, referred to as a time spacing value of 1, which means
that sequences will be generated at half the maximal rate. With
one-dimensional CAs, it was found that time spacing is needed in
order to produce high-quality random numbers [3], [4], [10]. A
major result of this work is that excellent random-number
sequences can be produced by our two-dimensional CAs without
recourse to time spacing. This is important in that the random
numbers can be generated at a much higher rateÐwithout loss of
quality. Lack of time spacing may also facilitate hardware
implementation.

In conclusion, by applying an extensive suite of randomness
tests, we have demonstrated that two-dimensional CAs can be
automatically designed to rapidly generate high-quality random-
number sequences.

REFERENCES

[1] P.P. Chaudhuri, D.R. Chowdhury, S. Nandi, and S. Chattopadhyay,
Additive Cellular Automata: Theory and Applications, vol. 1. Los Alamitos,
Calif.: IEEE CS Press, 1997.

[2] S. Nandi, B.K. Kar, and P.P. Chaudhuri, ªTheory and Application of
Cellular Automata in Cryptography,º IEEE Trans. Computers, vol. 43,
pp. 1,346-1,357, 1994.

[3] P.D. Hortensius, R.D. McLeod, W. Pries, D.M. Miller, and H.C. Card,
ªCellular Automata-Based Pseudorandom Number Generators for Built-In
Self-Test,º IEEE Trans. Computer-Aided Design, vol. 8, no. 8, pp. 842-859,
Aug. 1989.

[4] P.D. Hortensius, R.D. McLeod, and H.C. Card, ªParallel Random Number
Generation for VLSI Systems Using Cellular Automata,º IEEE Trans.
Computers, vol. 38, no. 10, pp. 1,466-1,473 Oct. 1989.

[5] P. Tsalides, T.A. York, and A. Thanailakis, ªPseudorandom Number
Generators for VLSI Systems Based on Linear Cellular Automata,º IEE Proc.
E. Computers and Digital Technology, vol. 138, pp. 241-249, 1991.

[6] K. Cattel, S. Zhang, M. Serra, and J.C. Muzio, ª2-by-n Hybrid Cellular
Automata with Regular Configuration: Theory and Application,º IEEE
Trans. Computers, vol. 48, no. 3, pp. 285-295, Mar. 1999.

[7] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
third ed. Heiderberg: Springer-Verlag, 1996.

[8] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, Mass.: MIT
Press, 1996.

[9] M. Sipper and M. Tomassini, ªGenerating Parallel Random Number
Generators by Cellular Programming,º Int'l J. Modern Physics C, vol. 7, no. 2,
pp. 181-190, 1996.

[10] M. Tomassini, M. Sipper, M. Zolla, and M. Perrenoud, ªGenerating High-
Quality Random Numbers in Parallel by Cellular Automata,º Future
Generation Computer Systems, vol. 16, pp. 291-305, 1999.

[11] D.R. Chowdhury, I.S. Gupta, and P.P. Chaudhuri, ªA Class of Two-
Dimensional Cellular Automata and Applications in Random Pattern
Testing,º J. Electronic Testing: Theory and Applications, vol. 5, pp. 65-;80, 1994.

[12] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming
Approach. Heidelberg: Springer-Verlag, 1997.

[13] M. Sipper, ªThe Emergence of Cellular Computing,º Computer, vol. 32, no. 7,
pp. 18-26, July 1999.

[14] G. Marsaglia, ªDiehard,º http://stat.fsu.edu/~geo/diehard.html, 1998.
[15] D.E. Knuth, The Art of Computer Programming: Volume 2, Seminumerical

Algorithms, third ed. Reading, Mass.: Addison-Wesley, 1998.
[16] A. Wuensche and M. Lesser, The Global Dynamics of Cellular Automata: An

Atlas of Basin of Attraction Fields of One-dimensional Cellular Automata.
Santa Fe Inst. for Studies in the Sciences of Complexity, Reading, Mass.:
Addison-Wesley, 1992.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000 1151




